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CHAPTER 1. MOTION MATTERS

Instantaneous Speed

In Section 1.3 we discuss the average speed of an object, which is defined
to be the ratio of the distance traveled, �d, divided by the time interval, �t: 

vav � .

You may have noticed that we cannot measure the speed of an object in
an instant of time. The average speed is the only kind of speed that we can
actually measure, since we can only measure distance intervals and time in-
tervals. We can use more sophisticated instruments to obtain the distance
traveled in smaller and smaller time intervals. If the time interval �t has ap-
proached zero, we are dealing with an instant in time, and the average speed

�d
�
�t
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becomes the actual speed at that instant. This is called the instantaneous speed.
However, in any real experiment we can never actually achieve an instant
in time, an infinitesimally small time interval, since every measurement, no
matter how fast we can make it, still takes some amount of time.

Nevertheless, we can use a graph of the motion to calculate a reasonable
value for the instantaneous speed at an instant of time. We point out in
Section 1.4 that the slope of the line on a distance–time graph is

slope of line � ,

which is just the average speed during the time interval �t. As the time in-
terval becomes smaller and smaller, the line on the graph during the time
interval becomes straighter and straighter. In such a situation, for very tiny
time intervals, the average speed becomes, by definition, equal to the in-
stantaneous speed at the center of the time interval. To put it differently,
as the value of �t approaches the limit of zero (which we cannot actually
measure), the value for the average speed vav approaches the instantaneous
speed, which is given the symbol v. In this case, the slope of the line be-
comes a tangent to the curve at that instant. This means: the instantaneous
speed of an object at an instant of time t is defined as the tangent at time t to the
line representing the object’s motion on a distance–time graph.

This can also be expressed in mathematical symbols as follows:

lim
�t�0

� v.

In words, this says that in the limit as the time interval approaches zero,
the ratio of the distance traveled divided by the time interval approaches
the instantaneous speed at the time t at the center of the original time 
interval. (Readers who have had some calculus may recognize this as a 
differential.)

Derivation of Galileo’s Expression d � 1⁄2at2

Galileo’s famous expression gives the distance (d ) traveled by an object start-
ing from rest and moving with uniform acceleration (a) during the time in-
terval (t). Note that this expression does not contain the speed, only the
distance and time, starting from zero, and the acceleration.

Galileo originally used a geometrical argument to derive this expression.
Algebra was used more than 100 years later to derive the same expression.

�d
�
�t

�d
�
�t
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Since it is more straightforward, we will use the algebraic derivation, along
with some of Galileo’s original assumptions.

We start with the definition of the average speed of a uniformly accel-
erating object during the time interval �t. (This expression holds no mat-
ter how the object is moving.)

vav � .

We can rewrite this equation as

�d � vav � �t.

What would be the average velocity for a uniformly accelerating object?
Galileo reasoned (as others had before him) that for any quantity that
changes uniformly, the average value is just halfway between the beginning
value and the final value. For uniformly accelerated motion starting from
rest, the initial speed is zero, vinitial � 0. So, the average speed is halfway
between 0 and vfinal:

vav � 1⁄2vfinal.

Substituting, we have

�d � 1⁄2vfinal � �t.

Now we have to obtain a value for vfinal. We can do this by starting with
Galileo’s definition of average acceleration

aav � .

In our case, aav has a constant value, a, since the acceleration is uniform
(constant). The value of �v is vfinal � vinitial, which is just vfinal, since 
vinitial � 0. Substituting in the equation for aav, we have

a � .

Rearranging, we get

vfinal � a � �t.

vfinal
�

�t

�v
�
�t

�d
�
�t
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So now we can replace vfinal in the expression for �d, and we obtain

�d � 1⁄2vfinal � �t,

�d � 1⁄2a(�t)2.

This is equivalent to Galileo’s expression. If we measure the distance and
the time interval from the position and the instant when the motion starts,
then dinitial and tinitial are zero. We can then write this equation as

dfinal � 1⁄2atfinal
2.

Or, if we let dfinal � d and tfinal � t, we have an even simpler expression

d � 1⁄2at2.

If we start with a nonzero initial speed, then we have

d � vinitial t � 1⁄2at2.

CHAPTER 3. UNDERSTANDING MOTION

Derivation of the Parabolic 
Trajectory of a Projectile

The motion of a projectile is composed of two independent motions: uni-
form velocity in the horizontal direction and uniform acceleration in the
vertical direction. During the time interval t, the distance traveled by the
projectile in the horizontal direction, x, with uniform speed vx is

x � vxt.

The distance the projectile moves in the vertical direction, y, during the
same time interval t is

y � 1⁄2gt2.

Solving the equation x � vx t for t gives

t � .
x

�
vx
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Because the time interval t is the same in both equations, we can substitute
x/vx for t in the equation for y. This gives

y � 1⁄2g� �
2
,

or

y � ��
2v

g

x
2�� x2.

This last equation contains two variables, x and y. It also contains three
constant quantities: g, 2, and the horizontal speed vx. The vertical distance
y that the projectile falls is thus a constant times the square of the hori-
zontal displacement x:

y � (constant)x2.

The mathematical curve represented by this relationship between x and
y is called a parabola. Galileo deduced the parabolic shape of trajectories
by an argument similar to the one used here. This discovery greatly sim-
plified the study of projectile motion, because the geometry of the parabola
had been established centuries earlier by Greek mathematicians.

x
�
vx

PART ONE 29

e

h

f i

d c

Drawing of a parabolic trajectory
from Galileo's Two New Sciences.

b a
o
g

l

n

Derivation of the Equation for Centripetal
Acceleration, ac � v2/R

Assume that a stone on the end of a string is moving uniformly in a circle
of radius R. You can find the relationship between ac, v, and R by treating
a small part of the circular path as a combination of tangential motion and
acceleration toward the center. To follow the circular path, the stone must
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accelerate toward the center through a distance h in the same time that it
would move through a tangential distance d. The stone, with speed v, would
travel a tangential distance d given by d � v�t. In the same time �t, the
stone, with acceleration ac, would travel toward the center through a dis-
tance h given by h � 1⁄2ac �t2. (You can use this last equation because at 
t � 0, the stone’s velocity toward the center is zero.)

You can apply the Pythagorean theorem to the triangle in the figure that
follows:

R2 � d2 � (R�h)2

� R2 � 2Rh � h2.

When you subtract R2 from each side of the equation, you are left with

d2 � 2Rh � h2.

You can simplify this expression by making an approximation. Since h is
very small compared to R, h2 will be very small compared to Rh. And since
�t must be vanishingly small to get the instantaneous acceleration, h2 will
become vanishingly small compared to Rh. So you can neglect h2 and write

d2 � 2Rh.

Also, d � v�t and h � 1⁄2ac�t2; so you can substitute for d2 and for h ac-
cordingly. Thus,

(v �t)2 � 2R � 1⁄2ac (�t)2,

v2(�t)2 � Rac(�t)2,

v2 � Rac,

or

ac � �
v
R

2

�.

h

R

d

R
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The approximation becomes better and better as �t becomes smaller and
smaller. In other words, v2/R gives the magnitude of the instantaneous cen-
tripetal acceleration for a body moving on a circular arc of radius R. For
uniform circular motion, v2/R gives the magnitude of the centripetal ac-
celeration at every point of the path. (Of course, it does not have to be a
stone on a string. It can be a small particle on the rim of a rotating wheel,
or a house on the rotating Earth, or a coin sitting on a rotating phono-
graph disk, or a car in a curve on the road, an electron in its path through
a magnetic field, or the Moon going around the Earth in a nearly circular
path.)

The relationship among ac, v, and R was discovered by the Dutch sci-
entists Christiaan Huygens and was published by him in 1673. Newton,
however, must have known it in 1666, but he did not publish his proof un-
til 1687, in the Principia.

We can substitute the relation v � 2�Rf or v � 2�R/T (see Section 4.11)
into the equation for ac:

ac � �
v
R

2

�

�

� 4�2Rf 2

or

ac � .

These two resulting expressions for ac are entirely equivalent.

CHAPTER 4. NEWTON’S UNIFIED THEORY

“Weighing the Earth”

Now that we know how g arises in terms of Newton’s law of universal grav-
itation, we can use the last equation above to find the mass of the Earth.
This is possible because all of the terms in this equation are known, except

4�2R
�

T 2

(2�Rf )2

�
R
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for MEarth. To find MEarth, first solve for it in the equation, using simple 
algebra: 

MEarth � �
gR

G
Earth
�.

(Be sure that you understand each step in obtaining the answer below; look
at the review of scientific notation in the Student Guide, if necessary.)

Now substitute the known values on the right side of the equation

MEarth � .

To obtain a result from this expression, we perform all of the indicated
arithmetic on the numbers and, separately, on the units. We’ll first collect
each of these together, which results in the following:

MEarth ��
(9

6
.8
.6
)(
7
6.

�

4 �

10
1
�

0
11

6)2

� .

For simplicity, let’s first work on the numbers (but never forgetting 
the units, which we’ll carry along). We start by squaring the term in the
numerator

(6.4 � 106)2 � 40.96 � 1012 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

So now we have

�
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

Multiply and divide the numbers, then subtract the exponent of the de-
nominator from that of the numerator

MEarth � �
(9.8

6
)(
.
4
6
0
7
.96)

� � 1012 � 1011 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�

� 60.18 � 1023 � 6.02 � 1024 �
(
N
m/

m
s2

2

)
/
(m
kg

)
2

2

�.

(9.8)(40.96 � 1012)
���

6.67 � 10�11

(m/s2)(m)2

��
N m2/kg2

(9.8 m/s2)(6.4 � 106 m)2

���
(6.67 � 10�11 N m2/kg2)
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Now let’s work on the units (carrying along the numerical value):

MEarth � 6.02 � 1024 �
(m

(s
)(
2

m
)(N

)2

m
(k

2

g
)
)2

�

� 6.02 � 1024 �
m
s2N

3 k
m
g

2

2

�.

Cancel the m2:

� 6.02 � 1024 �
m
s2

k
N
g2

�.

By definition 1 N � 1 kg m/s2. Substituting for N we have

� 6.02 � 1024 �
m
s2

k
k
g
g

2

m
s2

�.

Canceling as indicated, we are left simply with kg. So our final result is

MEarth � 6.02 � 1024 kg.

This is a lot of mass, and the Earth is only one small blue planet just 4000
miles in radius! The value we have obtained agrees with the mass of the
Earth obtained by other means, once again confirming Newton’s theory.

Newton’s Work: Impact and Reaction

Newton’s work opened whole new lines of investigation, both theoretical
and observational. In fact, much of our present science and also our tech-
nology had their effective beginnings with the work of Newton and those
who followed in his spirit. New models, new mathematical tools, and a new
confidence encouraged those followers to attack new problems, to open
new vistas of research, and to answer long-standing questions. The mod-
ern view of science is that it is a continuing exploration of ever more in-
teresting fields.

Newton’s influence was not limited to science alone. The period fol-
lowing his death in 1727 was a period of further understanding and appli-
cation of his discoveries and method. His influence was felt especially in
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philosophy and literature, but also in many other fields outside science. Let
us round out our view of Newton by referring to some of these effects.

The eighteenth century is often called the Age of Reason, the apogee of
the so-called Enlightenment. “Reason” was the motto of the eighteenth-
century philosophers. Enlightened by reason, especially scientific reason,
humanity would overcome the darkness of ignorance and usher in a new
age of the flowering of human potential. Such ideals appeared, for instance,
in the following excerpt from Hymn to Science by the poet Mark Akenside
(1721–1770).*

Science! thou fair effusive ray
From the great source of mental day,

Free, generous, and refined!
Descend with all thy treasures fraught,
Illuminate each bewilder’d thought,

And bless my labouring mind. . . . 

Oh! let thy powerful charms impart
The patient head, the candid heart,

Devoted to thy sway;
Which no weak passions e’er mislead,
Which still with dauntless steps proceed

Where reason points the way. . . . 

Give me to learn each secret cause;
Let Number’s, Figure’s, Motion’s laws

Reveal’d before me stand;
These to great Nature’s scenes apply,
And round the globe, and through the sky,

Disclose her working hand.

Many thinkers of the Enlightenment believed they could extend the tri-
umph of human reason in science to other areas of human endeavor. As a
result, Newtonian physics, religious toleration, and republican government
were all advanced by the same movement. However, their theories about
improving religion and society were not convincingly connected. This does
not mean there was really a logical link among these concepts. Nor were
many eighteenth-century thinkers, in any field or nation, much bothered
by other gaps in logic and feeling. For example, they believed that “all men
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are created equal.” Yet they did little to remove the chains of black slaves,
the ghetto walls imprisoning Jews, or the laws that denied rights to women.

Still, compared with the previous century, the dominant theme of the
eighteenth century was moderation, the “happy medium.” The emphasis was
on greater toleration of different opinions, restraint of excess, and balance
of opposing forces. Even reason was not allowed to question religious faith
too strongly. Atheism, which some philosophers thought would logically
result from unlimited rationality, was still regarded with horror by most
Europeans.

The Constitution of the United States of America is one of the most en-
during achievements of this period. Its system of “checks and balances” was
designed specifically to prevent any one group from getting too much
power. It attempted to establish in politics a state of equilibrium of oppos-
ing trends. This equilibrium, some thought, resembled the balance between
the Sun’s gravitational pull and the tendency of a planet to fly off in a
straight line. If the gravitational attraction upon the planet increased with-
out a corresponding increase in planetary speed, the planet would fall into
the Sun. If the planet’s speed increased without a corresponding increase
in gravitational attraction, it would escape from the solar system. When
the opposing tendencies balanced, harmony resulted.

Political philosophers, some of whom used Newtonian physics as a
model, hoped to create a similar balance in government. They tried to de-
vise a system that would avoid the extremes of dictatorship and anarchy.
According to James Wilson (1742–1798), who played a major role in writ-
ing the American Constitution:

In government, the perfection of the whole depends on the balance
of the parts, and the balance of the parts consists in the indepen-
dent exercise of their separate powers, and, when their powers are
separately exercised, then in their mutual influence and operation
on one another. Each part acts and is acted upon, supports and is
supported, regulates and is regulated by the rest.

Both Newton’s life and his writings seemed to support the idea of po-
litical democracy. A former farm boy had attained the outermost reaches
of the human imagination. What he had found there meant, first of all, that
the same set of laws governed motion in the celestial and terrestrial spheres.
This smashed the old beliefs about “natural place” and extended a new
democracy throughout the Universe. Newton had shown that all matter,
whether the Sun or an ordinary stone, was created equal; that is to say, all
matter had the same standing before “the Laws of Nature and of Nature’s
God.” (This phrase was used at the beginning of the Declaration of Inde-
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pendence to justify the desire of the people in the American colonies to
throw off their oppressive political system and to become an independent
people.) All political thought at this time was heavily influenced by New-
tonian ideas. The Principia seemed to offer a parallel to theories about
democracy. It seems logical that all people, like all natural objects, are cre-
ated equal before nature’s creator.

In literature, too, as already indicated, many welcomed the new scien-
tific viewpoint. It supplied new ideas, convenient figures of speech,
metaphors, parallels, and concepts which writers used in poems and essays.
Many poems of the eighteenth century referred to Newton’s discovery that
white light is composed of colors (see Chapter 8). Samuel Johnson advo-
cated that words drawn from the vocabulary of the natural sciences be used
in literary works. He defined many such words in his Dictionary and illus-
trated their application in his Rambler essays.

However, not everyone welcomed the new rational, scientific viewpoint.
That viewpoint was based on the idea that nature consists only of matter
moving through empty space according to gravity and Newton’s laws of
motion. Many writers and artists of the Romantic movement were partic-
ularly disturbed by this so-called “mechanical world view” which, they ar-
gued, replaced the vibrancy and beauty of nature with an ugly, lifeless world
of inert particles moving forever in empty space. Where in this system is
there room for the beauty and warmth and feeling of a gorgeous rainbow,
a melodious concerto, or the emotions of love and hate, ambition and pride,
happiness and sorrow?

Romanticism started in Germany about 1780 among young writers in-
spired by the poet–philosopher Johann Wolfgang von Goethe. The most
familiar examples of Romanticism in English literature are the poems and
novels of Blake, Coleridge, Shelley, Byron, Scott, and Wordsworth. Most
of the Romantics scorned the mathematical view of nature. They believed
that any whole thing, whether a single human being or the entire Universe,
is filled with a unique, nonmaterial spirit. This spirit cannot be explained
by reason; it can only be felt. The Romantics insisted that phenomena can-
not be meaningfully analyzed and reduced to their separate parts by me-
chanical explanations or pure reason alone. Contrast the following excerpt
from William Wordsworth’s (1770–1850) “The Tables Turned”* with 
Akenside’s “Hymn to Science” quoted earlier:*

Up! Up! my friend, and clear your looks,
Why all this toil and trouble?
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Up! Up! my friend, and quit your books,
Or surely you’ll grow double. . . . 

Books! ’tis a dull and endless strife,
Come, hear the woodland linnet,
How sweet his music; on my life
There’s more of wisdom in it.

And hark! How blithe the throstle sings!
And he is no mean preacher;
Come forth into the light of things,
Let Nature be your teacher.

The Romantic philosophers in Germany regarded Goethe as their great-
est scientist as well as their greatest poet. They pointed in particular to his
theory of color, which flatly contradicted Newton’s theory of light. Goethe
held that white light does not consist of a mixture of colors and that it is
useless to “reduce” or “torture” a beam of white light by passing it through
a prism to study its separate spectral colors. Rather, he charged, the colors
of the spectrum are artificially produced in Newton’s experiment using the
prism, acting on and changing the light which is itself pure.

In the judgment of all modern scientists on this point, Newton was right
and Goethe wrong. This does not mean that so-called Nature Philosophy, in-
troduced by Friedrich Schelling in the early 1800s as the Romantic answer
to Newtonian physics, was without any value. It encouraged speculation about
ideas, even if they were so general that they could not be easily tested by ex-
periment. At the time, it was condemned by most scientists for just this rea-
son. Today, most historians of science agree that Nature Philosophy eventu-
ally played an important role in making possible certain scientific discoveries
later on. Among these was the general principle of conservation of energy,
which is described in the next two chapters. This principle asserted that all
the “forces of nature,” that is, the phenomena of heat, gravity, electricity,
magnetism, and so forth, are forms of one underlying “force” (which we now
call energy). This idea had agreed well with the viewpoint of Nature Phi-
losophy. But it also could be put eventually in a scientifically acceptable form.

Movements hostile to conventional science have in fact occurred from
time to time since Antiquity, in various forms, and are again visible today.
Some modern artists, some intellectuals, and most members of the “alter-
native” or “new age” movements express deep-felt dislikes and mistrust of
science. Their feelings are similar to, and historically related with, those of
the Romantics. They are based in part on the mistaken notion that mod-
ern scientists dogmatically claim to be able to find (or have) a mechanical
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explanation for everything, whereas science is so powerful by being neither
dogmatic, nor beholden only to “mechanics,” nor ambitious to other fields
in which it does not belong.

Even the Roman philosopher Lucretius (100–55 B.C.), who supported
the atomic theory in his poem On the Nature of Things, wished to preserve
some role for “free will” in the Universe, by suggesting that atoms might
swerve randomly in their paths. This was not enough for Romantics, or
even for some scientists. For example, Erasmus Darwin, a scientist and
grandfather of evolutionist Charles Darwin, asked:

Dull atheist, could a giddy dance
Of atoms lawless hurl’d

Construct so wonderful, so wise,
So harmonised a world?

The Romantic Nature philosophers thought they could discredit the
Newtonian scientists by forcing them to answer this question. To say “yes,”
they argued, would be absurd, and to say “no” would be disloyal to New-
tonian beliefs. But the Newtonians succeeded quite well without commit-
ting themselves to any definite answer to Erasmus Darwin’s question. They
went on to discover immensely powerful and valuable laws of nature, which
are discussed in the chapters ahead.

Questions

1. Describe some of the impacts of Newton’s work outside the field of 
science.

2. What impact did Newtonian physics have on political thought?
3. Why did some people eventually reject the new physics?
4. Contrast the excerpts from the poems by Akenside and Wordsworth.
5. The poem by Erasmus Darwin asks a question. What is it in your own

words? How did Nature Philosophers attempt to discredit Newtonian
scientists?

CHAPTER 5. CONSERVING MATTER AND MOTION

An Example of Conservation of Momentum

(1) A space capsule at rest in space, far from the Sun or planets, has a mass
of 1000 kg. A meteorite with a mass of 0.1 kg moves toward it with a speed
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of 1000 m/s. How fast does the capsule (with the meteorite stuck in it)
move after being hit?

mA (mass of the meteorite) � 0.1 kg,

mB (mass of the capsule) � 1000 kg,

vA (initial speed of meteorite) � 1000 m/s,

vB (initial speed of capsule) � 0,

vA� (final speed of meteorite) � ?,

v�B (final speed of capsule) � ?.

The law of conservation of momentum states

mAvA � mBvB � mAv�A � mBv�B.

Inserting the values given, we have

(0.1 kg)(1000 m/s) � (1000 kg) (0)

� (0.1 kg) v�A � (1000 kg) v�B,

100 kg � m/s � (0.1 kg) v�A � (1000 kg) v�B.

Since the meteorite sticks to the capsule, v�B � v�A; so we can write

100 kg � m/s � (0.1 kg) v�A � (1000 kg) v�A,

100 kg � m/s � (1000 � 1 kg) v�A.

Therefore,

vA� � �
10

1
0
00

k
0
g
.1

�

k
m
g
/s

�

� 0.1 m/s
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(in the original direction of the motion of the meteorite). Thus, the cap-
sule (with the stuck meteorite) moves on with a speed of 0.1 m/s.

Another approach to the solution is to handle the symbols first, and sub-
stitute the values as a final step. Substituting v�A for v�B and letting v�B � 0
would leave the equation mAvA � mAv�A � mBv�B � (mA � mB)v. Solving for
v�A we obtain

v�A � .

This equation holds true for any projectile hitting (and staying with) a body
initially at rest that moves on in a straight line after collision.

(2) An identical capsule at rest nearby is hit by a meteorite of the same
mass as the other. However, this meteorite, hitting another part of the cap-
sule, does not penetrate. Instead, it bounces straight back with almost no
change of speed. How fast does the capsule move after being hit? Since all
these motions are assumed to be along a straight line, we can drop the vec-
tor notation from the symbols and indicate the reversal in direction of the
meteorite with a minus sign.

The same symbols are appropriate as in (1):

mA � 0.1 kg, vB � 0,

mB � 1000 kg, v�A � 1000 m/s,

vA � 1000 m/s, v�B � ?.

The law of conservation of momentum states

mAvA � mBvB � mAv�A � mBv�B.

(1)

THUNK!

(2)

CLANG!

mAvA
��
(mA � mB)
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Here,

(0.1 kg)(1000 m/s) � (1000 kg)(0),

� (0.1 kg)(�1000 m/s) � (1000 kg) v�B

100 kg � m/s � �100 kg � m/s � (1000 kg) v�B,

v�B � �
20

1
0
0
k
0
g
0

�

k
m
g

/s
� � 0.2 m/s.

Thus, the struck capsule moves on with about twice the speed of the cap-
sule in (1). (A general symbolic approach to this solution can be taken, too.
The result is valid only for the special case of a projectile rebounding per-
fectly elastically from a body of much greater mass.)

There is a general lesson here. It follows from the law of conservation of
momentum that a struck object is given less momentum if it absorbs the pro-
jectile than if it reflects it. (A goalie who catches the soccer ball is pushed
back less than one who lets the ball bounce off.) Some thought will help you
to understand this idea: An interaction that merely stops the projectile is not
as great as an interaction that first stops it and then propels it back again.

Doing Work on a Sled

Suppose a loaded sled of mass m is initially at rest on low-friction ice. You,
wearing spiked shoes, exert a constant horizontal force F on the sled. The
weight of the sled is balanced by the upward push exerted by the ice, so F
is effectively the net force on the sled. You keep pushing, running faster and
faster as the sled accelerates, until the sled has moved a total distance d.

If the net force F is constant, the acceleration of the sled is constant.
Two equations that apply to motion starting from rest with constant ac-
celeration are

v � at

and

d � 1⁄2at2,

where a is the acceleration of the body, t is the time interval during which
it accelerates (i.e., the time interval during which a net force acts on the
body), v is the final speed of the body, and d is the distance it moves in the
time interval t.
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(a) (b)

According to the first equation, t � v/a. If we substitute this expression
for t in the second equation, we obtain

d � 1⁄2at2 � 1⁄2a�
v
a2

2

� � 1⁄2 �
v
a

2

�.

The work done on the sled is W � Fd. From Newton’s second law, 
F � ma, so

W � Fd

� ma � 1⁄2�
v
a2

2

�.

The acceleration cancels out, giving

W � 1⁄2mv2.

Therefore, the work done in this case can be found from just the mass
of the body and its final speed. With more advanced mathematics, it can
be shown that the result is the same whether the force is constant or not.

More generally, we can show that the change in kinetic energy of a body
already moving is equal to the work done on the body. By the definition
of average speed

d � vavt.

If we consider a uniformly accelerated body whose speed changes from v0
to v, the average speed (vav) during t is 1⁄2(v � v0). Thus,

d � �
v �

2
v0

� � t.

F

m
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By the definition of acceleration, a � � v/t; therefore, t � � v/a � (v � v0)/a.
Substituting (v � v0)/a for t gives

d � �
v �

2
v0

� � �
v �

a
v0

�

��
(v � v0

2
)(
a
v � v0)
�

� �
v2 �

2a
v0

2

�.

The work W done is W � Fd, or, since F � ma:

W � ma � d

� ma �

� �
m
2

� (v2 � v2
0)

� 1⁄2 mv2 � 1⁄2 mv2
0.

CHAPTER 6. THE DYNAMICS OF HEAT

You will often see energies expressed in terms of other units. A few of them
are listed here.

Unit name Symbol Definition Conversion

kilowatt hour kWhr A watt (W) is 1 J/s, so 1 kWh � 3.60 MJ
1 J � 1 W � s. A kWh is the 
amount of energy delivered 
in 1 hr if 1 kJ is delivered per
second.

Calorie Cal The energy required to heat 4.19 kJ
(or kilocalorie) (or kcal) 1 kg of water by 1°C.

British thermal Btu The energy required to heat 1.06 kJ
unit 0.454 kg by 0.556°C.

v2 � v2
0

�
2a
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Carnot’s Proof

Carnot’s proof of maximum efficiency of ideal, reversible engines starts with
the premise that when a cold object is in contact with a warmer one, the cold
object does not spontaneously cool itself further and so give more heat to the
warm object. However, an engine placed between the two bodies can move
heat from a cold object to a hot one. Thus, a refrigerator can cool a cold bot-
tle further, ejecting heat into the hot room. You will see that this is not simple.
Carnot proposed that during any such experiment, the net result cannot be
only the transfer of a given quantity of heat from a cold body to a hot one.

The engines considered in this case all work in cycles. At the end of each
cycle, the engine itself is back to where it started. During each cycle, it has
taken up and given off heat, and it has exerted forces and done work.

Consider an engine, labeled R in the figure, which suffers no internal
friction, loses no heat because of poor insulation, and runs so perfectly that
it can work backward in exactly the same way as forward (Figure A).

Now suppose someone claims to have invented an engine, labeled Z in
the next figure, which is even more efficient than the ideal engine R. That
is, in one cycle it makes available the same amount of work, W, as the R
engine does, but takes less heat energy, Q�, from the hot object to do it
(Q1� 	 Q1). Since heat and energy are equivalent and since Q2 � Q1 � W
and Q2� � Q�1 � W, it will also be true that Q2� 	 Q2 (Figure B).

Q2� � Q�1 � W,

Suppose the two engines are connected so that the work from one can
be used to drive the other. For example, the Z engine can be used to make
the R engine work like a refrigerator (Figure C).

B

Z
Q′2

Q′1
W

Hot

Cold

A

R

(a) (b)

Q2

Q1
W

Hot object

Cold object

R
Q2

Q1

Hot object

Cold object
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At the end of one cycle, both Z and R are back where they started. No
work has been done; the Z engine has transferred some heat to the cold
object; and the R engine has transferred some heat to the hot object. The
net heat transferred is Q1 � Q�1, and the net heat taken from the cold ob-
ject is Q2 � Q2. These are, in fact, the same

Q2 � Q2� � (Q1 � W ) � (Q�1 � W )

� Q1 � Q�1.

Because Z is supposed to be more efficient than R, this quantity should
be positive; that is, heat has been transferred from the cold object to the
hot object. Nothing else has happened. But, according to the fundamental
premise, this is impossible, and does not happen.

The only conclusion is that the Z engine was improperly “advertised”
and that it is either impossible to build or that in actual operation it will
turn out to be less efficient than R.

As for two different reversible engines, they must have the same effi-
ciency. Suppose the efficiencies were different; then one would have to be
more efficient than the other. What happens when the more efficient en-
gine is used to drive the other reversible engine as a refrigerator? The same
argument just used shows that heat would be transferred from a cold body
to a hot one. This is impossible. Therefore, the two reversible engines must
have the same efficiency.

To actually compute that efficiency, you must know the properties of one
reversible engine; all reversible engines working between the same tem-
peratures must have that same efficiency. (Carnot computed the efficiency
of an engine that used an ideal gas instead of steam.)

CHAPTER 7. HEAT—A MATTER OF MOTION

Averages and Fluctuations

Molecules are too small, too numerous, and too fast for us to measure the
speed of any one molecule, its kinetic energy, or how far it moves before

RZ

C

Q2

Q1

Q ′2

Q ′1 W

Hot

Cold
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colliding with another molecule. For this reason, the kinetic theory of gases
concerns itself with making predictions about average values. The theory
enables us to predict quite precisely the average speed of the molecules in
a sample of gas, the average kinetic energy, or the average distance the mol-
ecules move between collisions.

Any measurement made on a sample of gas reflects the combined effect
of billions of molecules, averaged over some interval of time. Such average
values measured at different times, or in different parts of the sample, will
be slightly different. We assume that the molecules are moving randomly.
Thus, we can use the mathematical rules of statistics to estimate just how
different the averages are likely to be. We will call on two basic rules of
statistics for random samples:

1. Large variations away from the average are less likely to occur than are
small variations. (For example, if you toss 10 coins, you are less likely
to get 9 heads and 1 tail than to get 6 heads and 4 tails.)

2. Percentage variations are likely to be smaller for large samples. (For
example, you are likely to get nearer to 50% heads by flipping 1000
coins than by flipping just 10 coins.)

A simple statistical prediction is the statement that if a coin is tossed
many times, it will land “heads” 50% of the time and “tails” 50% of the
time. For small sets of tosses there will be many “fluctuations” (variations)
to either side of the predicted average of 50% heads. Both statistical rules
are evident in the charts. The top chart shows the percentage of heads in
sets of 30 tosses each. Each of the 10 black squares represents a set of 30
tosses. Its position along the horizontal scale indicates the percentage of

0 10

30-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

0 10

90-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

0 10

180-Toss sets

20 30 40 50 60 70 80 90 100 % Heads

(a)

(b)

(c)
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heads. As we would expect from Rule 1, there are more values near the the-
oretical 50% than far from it. The second chart is similar to the first, but
here each square represents a set of 90 tosses. As before, there are more
values near 50% than far from it. And, as we would expect from Rule 2,
there are fewer values far from 50% than in the first chart.

The third chart is similar to the first two, but now each square repre-
sents a set of 180 tosses. Large fluctuations from 50% are less common still
than for the smaller sets.

Statistical theory shows that the average fluctuation from 50% shrinks in
proportion to the square root of the number of tosses. We can use this rule
to compare the average fluctuation for sets of, say, 30,000,000 tosses with
the average fluctuation for sets of 30 tosses. The 30,000,000-toss sets have
1,000,000 times as many tosses as the 30-toss sets. Thus, their average fluc-
tuation in percent of “heads” should be 1,000 times smaller!

These same principles hold for fluctuations from average values of any
randomly distributed quantities, such as molecular speed or distance be-
tween collisions. Since even a small bubble of air contains about a quintil-
lion (1018) molecules, fluctuations in the average value for any isolated sam-
ple of gas are not likely to be large enough to be measurable. A measurably
large fluctuation is not impossible, but extremely unlikely.

Deriving an Expression for Pressure 
from the Kinetic Theory

We begin with the model of a gas described in Section 7.2: “a large num-
ber of very small particles in rapid, disordered motion.” We can assume
here that the particles are points with vanishingly small size, so that colli-
sions between them can be ignored. If the particles did have finite size, the
results of the calculation would be slightly different. But the approxima-
tion used here is accurate enough for most purposes.

The motions of particles moving in all directions with many different ve-
locities are too complex as a starting point for a model. So we fix our at-
tention first on one particle that is simply bouncing back and forth between
two opposite walls of a box. Hardly any molecules in a real gas would ac-
tually move like this. But we will begin here in this simple way and later in
this chapter extend the argument to include other motions. This later part
of the argument will require that one of the walls be movable. Therefore,
we will arrange for that wall to be movable, but to fit snugly into the box.

In Chapter 5, you saw how the laws of conservation of momentum and
energy apply to cases like this. When a very light particle hits a more mas-
sive object, like the wall, very little kinetic energy is transferred. If the col-
lision is elastic, the particle will reverse its direction with very little change

PART ONE 47

3669_CassidySG_01b.text  5/23/02  10:08 AM  Page 47



in speed. In fact, if a force on the outside of the wall keeps it stationary
against the impact from inside, the wall will not move during the collisions.
Thus no work is done on it, and the particles rebound without any change
in speed.

How large a force will these particles exert on the wall when they hit it?
By Newton’s third law the average force acting on the wall is equal and op-
posite to the average force with which the wall acts on the particles. The
force on each particle is equal to the product of its mass times its acceler-
ation (F � ma), by Newton’s second law. The force can also be written as

F � ,

where �mv is the change in momentum. Thus, to find the average force
acting on the wall we need to find the change in momentum per second
due to molecule–wall collisions.

Imagine that a particle, moving with speed vx (the component of v in
the x direction) is about to collide with the wall at the right. The compo-
nent of the particle’s momentum in the x direction is mvx. Since the parti-
cle collides elastically with the wall, it rebounds with the same speed. There-
fore, the momentum in the x direction after the collision is m(�vx). The
change in the momentum of the particle as a result of this collision is

final momentum � initial momentum � change in momentum,

(�mvx) � (mvx) � (�2mvx).

Vx

−Vx

�(mv)
�

�t

L

L

L

m

v
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Note that all the vector quantities considered in this derivation have only
two possible directions: to the right or to the left. We can therefore indi-
cate direction by using a � or a � sign, respectively.

Now think of a single particle of mass m moving in a cubical container
of volume L3 as shown in the figure.

The time between collisions of one particle with the right-hand wall is the
time required to cover a distance 2L at a speed of vx; that is, 2L/vx. If 2L/vx
equals the time between collisions, then vx/2L equals the number of colli-
sions per second. Thus, the change in momentum per second is given by

� � � � � � � �,

(�2mvx) � �
2
v
L
x
� � .

The net force equals the rate of change of momentum. Thus, the aver-
age force acting on the molecule (due to the wall) is equal to �mvx

2/L, and
by Newton’s third law, the average force acting on the wall (due to the mol-
ecule) is equal to �mvx

2/L. So the average pressure on the wall due to the
collisions made by one molecule moving with speed vx is

P � �
A
F

� � �
L
F

2� � �
m
L
v
3

2
x

� � ,

where V (here L3) is the volume of the cubical container.
Actually, there are not one but N molecules in the container. They do

not all have the same speed, but we need only the average speed in order

mv2
x

�
V

�mv2
x

�
L

change in momentum
per second

number of collisions
per second

change in momentum
in one collision

v
mVx

L

L

m
=

2

Average
Force

−mvx mvx

−2 mvx
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to find the pressure they exert. More precisely, we need the average of the
square of their speeds in the x direction. We call this quantity (vx

2)av. The
pressure on the wall due to N molecules will be N times the pressure due
to one molecule, or

P � .

In a real gas, the molecules will be moving in all directions, not just in
the x direction; that is, a molecule moving with speed v will have three
components: vx, vy, and vz. If the motion is random, then there is no 
preferred direction of motion for a large collection of molecules, and
(v2

x)av � (v2
y )av � (v2

z)av. It can be shown from Pythagoras’ theorem that 
v2 � v2

x � v2
y � v2

z. These last two expressions can be combined to give

(v2)av � 3(v2
x )av

or

(v2
x ) � 1/3(v2)av.

By substituting this expression for (v2
x )av in the pressure formula, we get

P ��
Nm �

V
1/3(v2)av
�

� 1/3 �
N
V
m
� (v2)av.

Notice now that Nm is the total mass of the gas, and therefore Nm/V is
just the density D. So

P � 1/3D(v2)av.

This is our theoretical expression for the pressure P exerted on a wall by
a gas in terms of its density D and the molecular speed v.

Vx

V2

Vy

V

Nm(v2
x)av

�
V
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CHAPTER 8. WAVE MOTION

Calculating the Wavelength from an
Interference Pattern

V � (S1S2) � separation between S1 and S2. (S1 and S2 may be actual sources
that are in phase, or two slits through which a previously prepared wave
front passes.)

l � OQ � distance from sources to a far-off line or screen placed
parallel to the two sources,

x � distance from center axis to point P along the detection
line,

L � OP � distance to point P on detection line measured from
sources.

Waves reaching P from S1 have traveled farther than waves reaching P from
S2. If the extra distance is � (or 2�, 3�, etc.), the waves will arrive at P in
phase. Then P will be a point of strong wave disturbance. If the extra dis-
tance is 1⁄2� (or 3⁄2�, 5⁄2�, etc.), the waves will arrive out of phase. Then P
will be a point of weak or no wave disturbance.

With P as center, draw an arc of a circle of radius PS2; it is indicated on
the figure by the dotted line S2M. Then line segment PS2 equals line seg-
ment PM. Therefore, the extra distance that the wave from S travels to
reach P is the length of the segment SM.
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Now if d is very small compared to l, as you can easily arrange in prac-
tice, the circular arc S2M will be a very small piece of a large-diameter 
circle, or nearly a straight line. Also, the angle S1MS2 is very nearly 90°.
Thus, the triangle S1S2/M can be regarded as a right triangle. Furthermore,
angle S1S2/M is equal to angle POQ. Then the right triangle S1S2M is sim-
ilar to triangle POQ:

�
S
S

1

1

M
S2
� � �

O
X
P
� or �

S1

d
M
� � �

X
L

�.

If the distance l is large compared to x, the distances l and L are nearly
equal. Therefore,

�
S1

d
M
� �

But S1/M is the extra distance traveled by the wave from source S1. For P
to be a point of maximum wave disturbance, S1/M must be equal to n�
(where n � 0 if P is at Q, and n � 1 if P is at the first maximum of wave
disturbance found to one side of Q, etc.). So the equation becomes

�
n
d
�
� � �

x
l
�

and

� � �
d
n
x
l
�.

This important result says that if you measure the source separation d, the
distance l, and the distance x from the central line to a wave disturbance
maximum, you can calculate the wavelength �.

The Sonic Boom

In the last half century a new kind of noise has appeared: the sonic boom.
An explosion-like sonic boom is produced whenever an object travels
through air at a speed greater than the speed of sound (supersonic speed).
Sound travels in air at about 340 m/s. Many types of military airplanes can
travel at two or three times this speed. Flying at such speeds, the planes

x
�
l
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unavoidably and continually produce sonic booms, which can cause phys-
ical damage, and anxiety in people and animals. SST (Supersonic Trans-
port) planes such as the Concorde are now in civilian use in some countries.
The unavoidable boom raises important questions. What are the conse-
quences of this technological “progress”? Who gains, and what fraction of
the population do they represent? Who and how many pay the price? Must
we pay it; must SST’s be used? How much say has the citizen in decisions
that affect the environment so violently?

The formation of a sonic boom is similar to the formation of a wake by a
boat. Consider a simple point source of waves. If the source remains in the
same position in a medium, the wave it produces spreads out symmetrically
around it, as in Diagram 1. If the source of the disturbance is moving through
the medium, each new crest starts from a different point, as in Diagram 2.

Notice that the wavelength has become shorter in front of the object
and longer behind it. This is called the Doppler effect. The Doppler effect
is the reason that the sound an object makes seems to have a higher pitch
when it is moving toward you and a lower pitch when it is moving away
from you. In Diagram 3, the source is moving through the medium faster
than the wave speed. Thus, the crests and the corresponding troughs over-
lap and interfere with one another. The interference is mostly destructive
everywhere except on the line tangent to the wave fronts, indicated in Di-
agram 4. The result is a wake that spreads like a wedge away from the mov-
ing source, as in the diagram.

All these concepts apply not only to water waves but also to sound waves,
including those disturbances set up in air by a moving plane as it pushes
the air out of the way. If the source of sound is moving faster than the speed
of sound wave, then there is a cone-shaped wake (in three dimensions) that
spreads away from the source.

Actually, two cones of sharp pressure change are formed. One cone orig-
inates at the front of the airplane and one at the rear, as indicated in the
graph at the right.

4

31 2
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Because the double shock wave follows along behind the airplane, the
region on the ground where people and houses may be struck by the boom
(the “sonic-boom carpet”) is as long as the supersonic flight path itself. In
such an area, typically thousands of kilometers long and 80 km wide, there
may be millions of people. Tests made with airplanes flying at supersonic
speed have shown that a single such cross-country flight by a 315-ton su-
personic transport plane would break many thousands of dollars worth of
windows, plaster walls, etc., and cause fright and annoyance to millions of
people. Thus, the supersonic flight of such planes has been confined to
over-ocean use. It may even turn out that the annoyance to people on ship-
board, on islands, and on coastal areas near the flight paths is so great that
over-ocean flights, too, will have to be restricted.
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Model, Analogy, Hypothesis, Theory

Model, analogy, hypothesis, and theory have similar but distinct meanings
when applied to physics. An analogy is a corresponding situation which,
though perhaps totally unrelated to the situation at hand, helps you un-
derstand it. Many electronic circuits have analogs in mechanical systems.
A model is a corresponding situation that may offer a picture of what “is re-
ally going on” and therefore can be taken more seriously as an explanation.
An electron rotating around a nucleus is one model for an atom. A hypoth-
esis is a statement that can usually be directly or indirectly tested. To
Franklin, the statement “lightning is caused by electricity” was at first a hy-
pothesis. A theory is a more general construction, perhaps putting together
several models and hypotheses to explain a collection of effects that previ-
ously seemed unrelated. Newton’s explanation of Kepler’s laws, Galileo’s
experiments in mechanics and, finally, the Cavendish experiment were 
all part of the theory of universal gravitation. This is a good example of a
theory.

A well-tested theory, such as Newton’s theory of gravitation or Einstein’s
theory of relativity, is a robust part of science, explaining a myriad of indi-
vidual events or facts, and not to be confused with the vernacular use of
“just a theory.”

CHAPTER 9. EINSTEIN AND RELATIVITY THEORY

Differences in Speed for Light Waves Traveling
Parallel and Perpendicular to the Ether Wind

Instead of light waves moving parallel and perpendicular to the ether wind,
we examine an equivalent situation: a swimmer swimming at constant speed,
first parallel and perpendicular to a current, in a river 1 mi wide. Assume
the swimmer can swim at 2 mi/hr and the stream runs 1 mi/hr from left
to right in the diagram below. We will calculate the time required for the
swimmer to travel 1 mi each way with and against the current and 1 mi
back and forth across the current.

With and against the current

1 mile

v = 1 mi/hr
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Traveling 1 mi with the current, the swimmer’s speed is enhanced by the
speed of the current, while traveling 1 mi back against the current, his speed
is hindered by it. Thus the total time for the round trip is

t � �

� �
3

1
m

m
i/h

i
r

� �

� 1.33 hr

Across the current

In order to swim directly across the river from the starting point and back,
the swimmer, in each direction, must head toward a point upstream from the
destination point. The path taken relative to the fixed shore will be directly
across and back, 1 mi in each direction. But the path taken in each direction
by the swimmer relative to the flowing water will be along the hypothenuse of
a right triangle formed by the 1-mi width of the river and the speed of the
river current times one-half the total time for the round trip (1 mi/hr)t/2.

Using the Pythagorean theorem, the total distance traveled by the swim-
mer at the speed of 2 mi/hr is

(2 mi/hr) t � 2�(1 mi)�2 � [(1� mi/hr�) t/2]2�.�

In order to solve for t, cancel 2 on both sides and square both sides to get

mi2/hr2 t2 � mi2 � 1⁄4 mi2/hr2 t2.

Cancel mi2, multiply through by hr2 and solve for t2:

3⁄4t2 � 1 hr2,

t � �4/3� hr � 1.15 hr.

1 m
ile

(1 mi/hr) t/2

(2 m
i/hr) t/2

1 mile v = 1 mi/hr

1 mi
�
1 mi/hr

1 mi
���
2 mi/hr � 1 mi/hr

1 mi
���
2 mi/hr � 1 mi/hr
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Note that the time to cross the river back and forth at constant swimming
is less than the time it took in the earlier example to swim the same dis-
tance parallel to the current and back.

Michelson and Morley reasoned that exactly the same kind of result
would occur for a light beam split in half—one-half sent “swimming” per-
pendicular to the supposed ether wind and back, the other half “swim-
ming” parallel to the wind and back. Although the two halves of the beam
started out together, the one sent parallel to the wind should return slightly
behind the one sent parallel to the wind. The difference in time was ex-
pected to be small but detectable. Yet, when comparing the two light waves
experimentally, they could find no difference in the time of travel of the two
beams. We now know from Einstein’s second postulate that the times 
had to be the same, and that the ether model, while usually appealing, is
misleading.
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