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5.1 CONSERVATION OF MASS

Newton’s success in mechanics altered profoundly the way in which scien-
tists viewed the Universe. The motions of the Sun and planets could now
be considered as purely mechanical, that is, governed by the laws of me-
chanics, much like a machine. As for any machine, whether a clock or the
solar system, the motions of the parts were completely determined once
the system had been put together.

This model of the solar system is called the Newtonian world machine. As
is true of any model, certain things are left out. The mathematical equa-
tions that govern the motions of the model cover only the main properties
of the real solar system. The masses, positions, and velocities of the parts
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of the system, and the gravitational forces among them, are well described.
But the Newtonian model neglects the internal structure and chemical com-
position of the planets, as well as heat, light, and electric and magnetic
forces. Nevertheless, it serves splendidly to deal with observed motions in
mechanics, and to this day is in constant use, in physics, engineering, sports,
etc. Moreover, Newton’s approach to science and many of his concepts be-
came useful later in the study of those aspects he had to leave aside.

The idea of a world machine does not trace back only to Newton’s work.
In his Principia Philosophiae (1644), René Descartes, the most influential
French philosopher of the seventeenth century, had written:

I do not recognize any difference between the machines that arti-
sans make and the different bodies that nature alone composes, un-
less it be that the effects of the machines depend only upon the ad-
justment of certain tubes or springs, or other instruments, that,
having necessarily some proportion with the hands of those who
make them, are always so large that their shapes and motions can
be seen, while the tubes and springs that cause the effects of natu-
ral bodies are ordinarily too small to be perceived by our senses.
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FIGURE 5.1 Newtonian physics inspired
a mechanistic view of the universe as a
self-contained “clock” designed by God
to run on its own according to dis-
cernible principles and without any fur-
ther need for Divine intervention (ex-
cept, Newton thought, for occasional
“fine tuning”).
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Robert Boyle (1627–1691), a British scientist, is known particularly for
his studies of the properties of air. Boyle, a pious man, expressed the “mech-
anistic” viewpoint even in his religious writings. He argued that a God who
could design a universe that ran by itself, as an ideal machine would, was
more wonderful than a God who simply created several different kinds of
matter and gave each a natural tendency to behave as it does. Boyle also
thought it was insulting to God to believe that the world machine would
be so badly designed as to require any further divine adjustment once it
had been created. He suggested that an engineer’s skill in designing “an
elaborate engine” is more deserving of praise if the engine never needs su-
pervision or repair. Therefore, if the “engine” of the Universe is to keep
running unattended, the amounts of matter and motion in the Universe
must remain constant over time. Today we would say that they must be
conserved.

The idea that despite ever-present, obvious change all around us the to-
tal amount of material in the Universe does not change is really very old.
It may be found, for instance, among the ancient atomists (see Prologue).
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FIGURE 5.2 The Ancient of Days
by William Blake (1757–1827), an
English poet and artist who had lit-
tle sympathy with the Newtonian
style of “Natural Philosophy.” 
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And just 24 years before Newton’s birth, the English philosopher Francis
Bacon included the following among his basic principles of modern science
in Novum Organum 1620):

There is nothing more true in nature than the twin propositions
that “nothing is produced from nothing” and “nothing is reduced
to nothing” . . . the sum total of matter remains unchanged, with-
out increase or diminution.

This view agrees with everyday observation to some extent. While the form
in which matter exists may change, in much of our ordinary experience
matter appears somehow indestructible. For example, you may see a large
boulder crushed to pebbles and not feel that the amount of matter in the
Universe has diminished or increased. But what if an object is burned to
ashes or dissolved in acid? Does the amount of matter remain unchanged
even in such chemical reactions? What of large-scale changes such as the
forming of rain clouds or seasonal variations?

In order to test whether the total quantity of matter actually remains
constant, you must know how to measure that quantity. Clearly, it cannot
be measured simply by its volume. For example, you might put water in a
container, mark the water level, and then freeze the water. If you try this,
you will find that the volume of the ice is greater than the volume of the
water you started with. This is true even if you carefully seal the container
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FIGURE 5.3 In some open-air chemical reactions, the
mass of objects seems to decrease, while in others it
seems to increase
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so that no water can possibly come in from the outside. Similarly, suppose
you compress some gas in a closed container. The volume of the gas de-
creases even though no gas escapes from the container.

Following Newton, we regard the mass of an object as the proper mea-
sure of the amount of matter it contains. In all the examples in previous
chapters, we assumed that the mass of a given object does not change. How-
ever, a burnt match has a smaller mass than an unburnt one; an iron nail
increases in mass as it rusts. Scientists had long assumed that something
escapes from the match into the atmosphere and that something is added
from the surroundings to the iron of the nail. Therefore, nothing is really
“lost” or “created” in these changes. Not until the end of the eighteenth
century was sound experimental evidence for this assumption provided. The
French chemist Antoine Lavoisier produced this evidence.

Lavoisier (1743–1794), who is often called the “father of modern chem-
istry,” closely examined chemical reactions that he caused to occur in closed
flasks (a “closed system”). He carefully weighed the flasks and their con-
tents before and after each reaction. For example, he burned iron in a closed
flask. He found that the mass of the iron oxide produced equaled the sum
of the masses of the iron and oxygen used in the reaction. With experi-
mental evidence like this at hand, he could announce with confidence in
Traité Elémentaire de Chimie (1789):

We may lay it down as an incontestable axiom that in all the oper-
ations of art and nature, nothing is created; an equal quantity of
matter exists both before and after the experiment . . . and nothing
takes place beyond changes and modifications in the combinations
of these elements. Upon this principle, the whole art of perform-
ing chemical experiments depends.
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FIGURE 5.4 Conservation of mass was first
demonstrated in experiments on chemical re-
actions in closed flasks.
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THE FATHER OF MODERN CHEMISTRY

Antoine Laurent Lavoisier showed the de-
cisive importance of quantitative meas-
urements, confirmed the principle of con-
servation of mass in chemical reactions,
and helped develop the present system of
nomenclature for the chemical elements.
He also showed that organic processes
such as digestion and respiration are sim-
ilar to burning.

To earn money for his scientific re-
search, Lavoisier invested in a private
company which collected taxes for the
French government. Because the tax col-
lectors were allowed to keep any extra tax
which they could collect from the public
they became one of the most hated groups
in France. Lavoisier was not directly en-
gaged in tax collecting, but he had mar-
ried the daughter of an important execu-
tive of the company, and his association

with the company was one of the reasons
why Lavoisier was guillotined during the
French Revolution.

Also shown in the elegant portrait by
J.L. David is Madame Lavoisier. She as-
sisted her husband by taking data, trans-
lating scientific works from English into
French, and making illustrations. About
10 years after her husband’s execution, she
married another scientist, Count Rum-
ford, who is remembered for his experi-
ments which cast doubt on the caloric the-
ory of heat.

FIGURE 5.6 Title page from Lavoisier’s Traite. 

FIGURE 5.5 The Lavoisiers. 
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Lavoisier knew that if he put some material in a well-sealed bottle and
measured its mass, he could return at any later time and find the same mass.
It would not matter what had happened to the material inside the bottle.
It might change from solid to liquid or liquid to gas, change color or con-
sistency, or even undergo violent chemical reactions. At least one thing
would remain unchanged: the total mass of all the different materials in the
bottle.

In the years after Lavoisier’s pioneering work, a vast number of similar
experiments were performed with ever-increasing accuracy. The result was
always the same. As far as scientists now can measure with sensitive bal-
ances (having a precision of better than 0.000001%), mass is conserved, that
is, remains constant, in chemical reactions.

To sum up, despite changes in location, shape, chemical composition,
and so forth, the mass of any closed system remains constant. This is the state-
ment of the law of conservation of mass. This law is basic to both physics and
chemistry.

5.2 COLLISIONS

Looking at moving things in the world around us easily leads to the con-
clusion that everything set in motion eventually stops. Every actual ma-
chine, left to itself, eventually runs down. It appears that the amount of
motion in the Universe must be decreasing. This suggests that the Uni-
verse, too, must be running down, though, as noted earlier, many philoso-
phers of the seventeenth century could not accept such an idea. Some def-
inition of “motion” was needed that would permit one to make the
statement that “the quantity of motion in the Universe is constant.”

Is there a constant “quantity of motion” that keeps the world machine
going? To suggest an answer to this question, you can do some simple lab-
oratory experiments (Figure 5.7). Use a pair of carts with equal mass and
nearly frictionless wheels; even better are two dry-ice disks or two air-track
gliders. In a first experiment, a lump of putty is attached so that the carts
will stick together when they collide. The carts are each given a push so
that they approach each other with equal speeds and collide head-on. As
you will see when you do the experiment, both carts stop in the collision;
their motion ceases. But is there anything related to their motions that does
not change?

The answer is yes. If you add the velocity vA of one cart to the velocity
vB of the other cart, you find that the vector sum does not change. The vec-
tor sum of the velocities of these oppositely moving equally massive carts is
zero before the collision. It is also zero for the carts at rest after the collision.
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Does this finding hold for all collisions? In other words, is there a “law
of conservation of velocity”? The example above was a very special cir-
cumstance. Carts with equal masses approach each other with equal speeds.
But suppose the mass of one of the carts is twice the mass of the other cart.
We let the carts approach each other with equal speeds and collide, as be-
fore. This time the carts do not come to rest. There is some motion re-
maining. Both objects move together in the direction of the initial veloc-
ity of the more massive object. So the vector sum of the velocities is not
conserved in all collisions. (See Figure 5.7.)

Another example of a collision will confirm this conclusion. This time
let the first cart have twice the mass of the second, but only half the ve-
locity. When the carts collide head-on and stick together, they stop. The
vector sum of the velocities is equal to zero after the collision. But it was
not equal to zero before the collision. Again, there is no conservation of ve-
locity; the total “quantity of motion” is not always the same before and af-
ter a collision.

The problem was solved by Newton. He saw that the mass played a role
in such collisions. He redefined the “quantity of motion” of a body as the
product of its mass and its velocity, mv. This being a vector, it includes
the idea of the direction of motion as well as the speed. For example, in all
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FIGURE 5.7 Collision of two carts (see text).
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three collisions we have mentioned above, the motion of the carts before
and after collision is described by the equation

mAvA � mBvB � mAv�A � mBv�B

Here mA and mB (which remain constant) represent the respective masses
of the two carts, vA and vB represent their velocities before the collision,
and v�A and v�B represent their velocities after the collision. Earlier, we rep-
resented initial and final velocities by vi and vf. Here they are represented
by v and v� because we now need to add subscripts, such as A and B.

In words, the above equation states:

The vector sum of the quantities mass � velocity before the collision is
equal to the vector sum of the quantities mass � velocity after the colli-
sion. The vector sum of these quantities is constant, or conserved, in all
these collisions. 

The above equation is very important and useful, leading directly to a
powerful law, and of course is useful in allowing us to predict, at least qual-
itatively, the motions after collisions of the two colliding carts in the above
examples.

5.3 CONSERVATION OF MOMENTUM

The product of mass and velocity often plays an important role in me-
chanics. It therefore has been given a special name. Instead of being called
“quantity of motion,” as in Newton’s time, it is now called momentum. The
total momentum of a system of objects (e.g., the two carts) is the vector
sum of the momenta of all objects in the system. Consider each of the col-
lisions examined. The momentum of the system as a whole, that is, the vec-
tor sum of the individual parts, is the same before and after collision. Thus,
the results of the experiments can be summarized briefly: The momentum
of the system is conserved.

This rule (or law, or principle) follows from observations of special cases,
such as that of collisions between two carts that stuck together after col-
liding. But in fact, this law of conservation of momentum (often abbreviated
LCM) turns out to be a completely general, universal law. The momen-

after
collision

before
collision

��
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tum of any system is conserved if one condition is met: that no net force is
acting on the system—or, to put it in other words, that the system of ob-
jects can be considered closed to any effect from outside the system.

To see just what this condition means, let’s examine the forces acting on
one of the carts in the earlier experiment. Each cart, on a level track, ex-
periences three main forces. There is, of course, a downward pull Fgrav
exerted by the Earth, and an equally large upward push Ftable exerted by
the table. (See Figure 5.8.) During the collision, there is also on each a
push Ffrom other cart exerted by the other cart. The first two forces evidently
cancel, since the cart is not accelerating up or down while on the tabletop.
Thus, the net force on each cart is just the force exerted on it by the other
cart as they collide. (We assume that frictional forces exerted by the table
and the air are small enough to neglect. That was the reason for using dry-
ice disks, air-track gliders, or carts with “frictionless” wheels. This as-
sumption makes it easier to discuss the law of conservation of momentum.
Later, you will see that the law holds whether friction exists or not.)

The two carts form a system of bodies, each cart being a part of the sys-
tem. The force exerted by one cart on the other cart is a force exerted by
one part of the system on another part. It is not a force on the system as a
whole. The outside forces acting on the carts (by the Earth and by the
table) exactly cancel. Thus, there is no net outside force. The system is “iso-
lated.” If this condition is met, the total momentum of all parts making up
the system stays constant, it is “conserved.” This is the law of conservation
of momentum for systems of bodies that are moving with linear velocity v.

The Universality of Momentum Conservation

So far, you have considered only cases in which two bodies collide directly
and stick together. The remarkable thing about the law of conservation of
momentum is how universally it applies. For example:

1. It holds true no matter what kind of forces the bodies exert on each
other. They may be gravitational forces, electric or magnetic forces,
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Ftable

Fgrav

Fother cart

FIGURE 5.8 Forces on one of the
carts during collision. 
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tension in strings, compression in springs, attraction or repulsion. The
sum of the (mass � velocity) before is equal to the sum of the (mass �
velocity) of all parts after any interaction.

2. The LCM also holds true even when there are friction forces present.
If a moving object is slowed or stopped by frictional forces, for exam-
ple, a book sliding to a stop on a tabletop, then the Earth, to which
the table is attached, will take up the initial momentum of the book.
In general, the object producing friction becomes part of the system
of bodies to which the LCM applies.

3. It does not matter whether the bodies stick together or scrape against
each other or bounce apart. They do not even have to touch. When
two strong magnets repel or when a positively charged alpha particle
is repelled by a nucleus (which is also positive), conservation of mo-
mentum still holds in each of those systems.

4. The law is not restricted to systems of only two
objects; there can be any number of objects in
the system. In those cases, the basic conserva-
tion equation is made more general simply by
adding a term for each object to both sides of
the equation.

5. The size of the system is not important. The law
applies to a galaxy as well as to atoms.

6. The angle of the collision does not matter. All of the examples so far
have involved collisions between two bodies moving along the same
straight line. They were “one-dimensional collisions.” If two bodies
make a glancing collision rather than a head-on collision, each will
move off at an angle to the line of approach. The law of conservation
of momentum applies to such “two-dimensional collisions” also. (Re-
member that momentum is a vector quantity.) The law of conservation
of momentum also applies in three dimensions. The vector sum of the
momenta is still the same before and after the collision.

In the Student Guide for this chapter you will find a worked-out exam-
ple of a collision between a spaceship and a meteorite in outer space that
will help you become familiar with the law of conservation of momentum.
On p. 225, the sidebar, “A Collision in Two Dimensions,” shows an anal-
ysis of a two-dimensional collision. There are also short VHS or DVD
videos of colliding bodies and exploding objects. These include collisions
and explosions in two and three dimensions. The more of them you ana-
lyze, the more convinced you will be that the law of conservation of mo-
mentum applies to any isolated system.
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In general symbols, for n ob-
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These worked-out examples display a characteristic feature of physics:
again and again, physics problems are solved by applying the expression of
a general law to a specific situation. Both the beginning student and the vet-
eran research physicist find it helpful, but also awesome, that one can do
this. It seems strange that a few general laws enable one to solve an almost
infinite number of specific individual problems. As Einstein expressed it in
a letter to a friend:

Even though the axioms of a theory are posed by human beings,
the success of such an enterprise assumes a high degree of order in
the objective world which one is not at all authorized to expect a
priori. This is the wonder which is supported more and more with
the development of our knowledge.*

Everyday life seems so very different. There you usually cannot calcu-
late answers from general laws. Rather, you have to make quick decisions,
some based on rational analysis, others based on “intuition.” But the use
of general laws to solve scientific problems becomes, with practice, quite
natural also.
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FIGURE 5.9 Stroboscopic photo-
graphs of two balls colliding. A
ball enters from left top at a higher
speed than the one from the right
top. They collide near the center
of the picture and then separate at
different speeds.

* A. Einstein to M. Solvine, letter of March 30, 1952.
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5.4 MOMENTUM AND NEWTON’S 
LAWS OF MOTION

Earlier in this chapter we developed the concept of momentum and the law
of conservation of momentum by considering experiments with colliding
carts. The law was an “empirical” law; that is, it was discovered (perhaps “in-
vented” or “induced” are better terms) as a generalization from experiment.

We can show, however, that the law of conservation of momentum also
follows directly from Newton’s laws of motion. It takes only a little alge-
bra; that is, we can deduce the law from an established theory! Conversely,
it is also possible to derive Newton’s laws from the conservation law. Which
of these is the fundamental law and which the conclusion drawn from it is
therefore a bit arbitrary. Newton’s laws used to be considered the funda-
mental ones, but since about 1900 the conservation law has been assumed
to be the fundamental one.

Newton’s second law expresses a relation between the net force Fnet act-
ing on a body, the mass m of the body, and its acceleration a. We wrote
this as Fnet � ma. We can also write this law in terms of change of momen-
tum of the body. Recalling that acceleration is the rate-of-change of veloc-
ity, a � �v/�t, we can write

Fnet � ma � ,

or

Fnet �t � m �v.

If the mass of the body is constant, the change in its momentum, �(mv),
is the same as its mass times its change in velocity, m(�v), since only the
velocity changes. Then we can write

Fnet �t � �(mv).

That is, the product of the net force on a body and the time interval during which
this force acts equals the change in momentum of the body. (The quantity F �t
is called the “impulse.”)

This statement of Newton’s second law is more nearly how Newton ex-
pressed it in his Principia. Together with Newton’s third law, it enables us
to derive the law of conservation of momentum for the cases we have stud-
ied. The details of the derivation are given in the Student Guide, “Deriving
Conservation of Momentum from Newton’s Laws.” Thus, Newton’s laws

�v
�
�t
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A COLLISION IN TWO DIMENSIONS

The stroboscopic photograph shows a col-
lision between two wooden disks on a fric-
tionless horizontal table photographed
from straight above the table. The disks
are riding on tiny plastic spheres which
make their motion nearly frictionless.
Body B (marked �) is at rest before the
collision. After the collision it moves to 
the left, and Body A (marked �) moves to
the right. The mass of Body B is known
to be twice the mass of Body A: mB � 2mA.
We will analyze the photograph to see
whether momentum was conserved. (Note:
The size reduction factor of the photo-
graph and the [constant] stroboscopic flash
rate are not given here. But as long as all
velocities for this test are measured in the
same units, it does not matter here what
those units are.)

In this analysis, we will measure in cen-
timeters the distance the disks moved on
the photograph. We will use the time be-
tween flashes as the unit of time. Before
the collision, Body A (coming from the
lower part of the photograph) traveled
36.7 mm in the time between flashes: vA �
36.7 speed-units. Similarly, we find that
v�A � 17.2 speed-units, and v�B � 11.0
speed units.

The total momentum before the colli-
sion is just mAvA. It is represented by an
arrow 36.7 momentum-units long, drawn
at right.

The vector diagram shows the mo-
menta mAv�A and mBv�B after the collision;
mAv�A is represented by an arrow 17.2 mo-
mentum-units long. Since mB � 2mA, the
mBv�B arrow is 22.0 momentum-units long.

The dotted line represents the vector
sum of mAv�A and mBv�B, that is, the total
momentum after the collision. Measure-

0 5

Momentum Scale (Arbitrary units)

′mAVA = 17.2

′mBVB = 22.0

mAVA = 36.7
mAVA + mBVB

10 15 20

′ ′

FIGURE 5.11 Momentum diagram of the two-
dimensional collision pictured in Fig. 5.10.

FIGURE 5.10
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and the law of conservation of momentum are not separate, independent
laws of nature.

In all the examples considered so far and in the derivation above, we
have considered each piece of the system to have a constant mass. But the
definition of momentum permits a change of momentum to arise from a
change of mass as well as from a change of velocity. In many cases, the mass
of the object involved is in fact changing. For example, as a rocket spews
out exhaust gases, its mass is decreasing; conversely, the mass of a train of
coal cars increases as it rolls past a hopper that drops coal into the cars.
The LCM remains valid for cases such as these, where the masses of the
objects involved are not constant, as long as no net forces act on the sys-
tem as a whole, and the momenta of all parts (including, say, that of the
rocket’s exhaust, are included).

One great advantage of being able to use the LCM is that it is a law of
the kind that simply says “before � after.” Thus, it applies in cases where
you do not have enough information to use Newton’s laws of motion dur-
ing the whole interval between “before” and “after.” For example, suppose
a cannon that is free to move fires a shell horizontally. Although it was ini-
tially at rest, the cannon is forced to move while firing the shell; it recoils.
The expanding gases in the cannon barrel push the cannon backward just
as hard as they push the shell forward. You would need a continuous record
of the magnitude of the force in order to apply Newton’s second law sep-
arately to the cannon and to the shell to find their respective accelerations
during their movement away from each other. A much simpler way is to
use the LCM to calculate the recoil. The momentum of the system (can-
non plus shell) is zero initially. Therefore, by the LCM, the momentum
will also be zero after the shell is fired. If you know the masses of the shell
and the cannon, and the speed of the emerging shell after firing, you can
calculate the speed of the recoil (or the speed of the shell, if you measure
the cannon’s recoil speed). Moreover, if both speeds can be measured after
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ment shows it to be 34.0 momentum-units
long. Thus, our measured values of the to-
tal momentum before and after the colli-
sion differ by 2.7 momentum-units. This
is a difference of about 7%. We can also
verify that the direction of the total is the
same before and after the collision to
within a small uncertainty.

Have we now demonstrated that mo-
mentum was conserved in the collision? Is
the 7% difference likely to be due entirely
to measurement inaccuracies? Or is there
reason to expect that the total momentum
of the two disks after the collision is re-
ally a bit less than before the collision?
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the separation, then the ratio of the masses of the two objects involved can
be calculated.

5.5 ISOLATED SYSTEMS

There are important similarities between the conservation law of mass and
that of momentum. Both laws are tested by observing systems that may be
considered to be isolated from the rest of the Universe. When testing or
using the law of conservation of mass, an isolated system such as a sealed
flask is used. Matter can neither enter nor leave this system. When testing
or using the law of conservation of momentum, another kind of isolated sys-
tem, one which experiences no net force from outside the system, is used.

Consider, for example, two frictionless carts colliding on a smooth hor-
izontal table, or two hockey pucks colliding on smooth ice. The very low
friction experienced by the pucks allows us to think away the ice on which
they move, and to consider just the pucks to form a very nearly closed or
isolated system. The table under the carts and the ice under the pucks do
not have to be included since their individual effects on each of the objects
cancel. That is, each puck experiences a downward gravitational force ex-
erted by the Earth, while the ice on the Earth exerts an equally strong up-
ward push.

Even in this artificial example, the system is not entirely isolated. There
is always a little friction with the outside world. The layer of gas under the
puck and air currents, for example, provide some friction. All outside forces
are not completely balanced, and so the two carts or pucks do not form a
truly isolated system. Whenever this is unacceptable, one can expand or
extend the system so that it includes the bodies that are responsible for the
external forces. The result is a new system on which the unbalanced forces
are small enough to ignore.

For example, picture two automobiles skidding toward a collision on an
icy road. The frictional forces exerted by the road on each car may be sev-
eral hundred newtons. These forces are very small compared to the im-
mense force (thousands of newtons) exerted by each car on the other when
they collide. Thus, for many purposes, the action of the road can be ig-
nored. For such purposes, the two skidding cars before, during, and after the
collision are nearly enough an isolated system. However, if friction with the
road (or the table on which the carts move) is too great to ignore, the law
of conservation of momentum still holds, if we apply it to a larger system—
one which includes the road or table. In the case of the skidding cars or
the carts, the road or table is attached to the Earth. So the entire Earth
would have to be included in a “closed system.”
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5.5 ISOLATED SYSTEMS 227

DERIVING CONSERVATION OF MOMENTUM 
FROM NEWTON’S LAWS

Suppose two bodies with masses mA and
mB exert forces on each other (by gravita-
tion or by magnetism, etc.). FAB is the
force exerted on body A by body B, and
FBA is the force exerted on body B by body
A. No other unbalanced force acts on ei-
ther body; they form an isolated system.
By Newton’s third law, the forces FAB and
FBA are at every instant equal in magni-
tude and opposite in direction. Each body
acts on the other for exactly the same time
�t. Newton’s second law, applied to each
of the bodies, says

FAB �t � �(mAvA)

and

FBA �t � �(mBvB).

By Newton’s third law,

FAB � �FBA

so that

FAB �t � �FBA �t.

Therefore,

�(mAvA) � ��(mBvB).

Suppose that the masses mA and mB are
constant. Let vA and vB stand for the ve-
locities of the two bodies at some instant,

and let v�A and v�B stand for their velocities
at some later instant. Then we can write
the last equation as

mAv�A � mAvA � �(mBv�B � mBvB).

and

mAv�A � mAvA � �mBv�B � mBvB

A little rearrangement of terms leads to

mAv�A � mBv�B � mAvA � mBvB.

You will recognize this as our original 
expression of the law of conservation of
momentum.

Here we are dealing with a system con-
sisting of two bodies. This method works
equally well for a system consisting of any
number of bodies.

FAB

FBA

mA

mB

FIGURE 5.12 Collision between two rocks. 
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5.6 ELASTIC COLLISIONS

In 1666, members of the recently formed Royal Society of London wit-
nessed a demonstration. Two hardwood balls of equal size were suspended
at the ends of two strings, forming two pendula. One ball was released from
rest at a certain height. It swung down and struck the other, which had
been hanging at rest.

After impact, the first ball stopped at the point of impact while the sec-
ond ball swung from this point, as far as one could easily observe, to the
same height as that from which the first ball had been released. When 
the second ball returned and struck the first, it was now the second ball
which stopped at the point of impact as the first swung up to almost the
same height from which it had started. This motion repeated itself for sev-
eral swings. (You can repeat it with a widely available desk toy.)

This demonstration aroused great interest among members of the Royal
Society. In the next few years, it also caused heated and often confusing ar-
guments. Why did the balls rise each time to nearly the same height after
each collision? Why was the motion “transferred” from one ball to the
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FIGURE 5.13 Demonstration with two pendula (similar to the demon-
stration witnessed by Royal Society members in 1666)
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other when they collided? Why did the first ball not bounce back from the
point of collision, or continue moving forward after the second ball moved
away from the collision point?

The LCM explains what is observed, but it would also allow quite differ-
ent results for different cases. The law says only that the momentum of ball
A just before it strikes the resting ball B is equal to the total momentum of

A and B just after collision. It does not say how A and
B share the momentum. The actual result is just one
of infinitely many different outcomes that would all
agree with conservation of momentum. For example,
suppose (though it has never been observed to hap-

pen) that ball A bounced back with ten times its initial speed. Momentum
would still be conserved if ball B went on its way at 11 times A’s initial speed.

In 1668, three men reported to the Royal Society on the whole matter
of impact. The three were the mathematician John Wallis, the architect
and scientist Christopher Wren, and the physicist Christian Huygens. Wal-
lis and Wren offered partial answers for some of the features of collisions;
Huygens analyzed the problem in complete detail.

Huygens explained that in such collisions another conservation law, in ad-
dition to the law of conservation of momentum, also holds. Not only is the
vector sum of the values of (mass � velocity) conserved, but so is the or-
dinary arithmetic sum—as we would now express it—of the values of 1⁄2mv2

for the colliding spheres! In modern algebraic form, the relationship he dis-
covered can be expressed as

1⁄2mAvA
2 � 1⁄2mBvB

2 � 1⁄2mAvA�
2 � 1⁄2mBv�2

B .

The quantity 1⁄2mv2—a scalar, not a vector—has come to be called kinetic
energy, from the Greek word kinetos, meaning “moving.” (The origin of the
1⁄2, which does not really affect the rule here, is shown in the Student Guide
discussion for this chapter, “Doing Work on a Sled.”) The equation stated
above, then, is the mathematical expression of the conservation of kinetic en-
ergy. This relationship holds for the collision of two “perfectly hard” ob-
jects similar to those observed at the Royal Society meeting. There, ball A
stopped and ball B went on at A’s initial speed. This is the only result that
agrees with both conservation of momentum and conservation of kinetic en-
ergy, as you can demonstrate yourself.

But is the conservation of kinetic energy as general as the law of con-
servation of momentum? Is the total kinetic energy present conserved in
any interaction occurring in any isolated system?

It is easy to see that it is not, that it holds only in special cases such as
that observed at the Royal Society test (or on making billiard ball colli-
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In general symbols, 

��
i

(1⁄2mi vi
2) � 0.
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sions). Consider the first example of Section 5.2. Two carts of equal mass
(and with putty between the bumping surfaces) approach each other with
equal speeds. They meet, stick together, and stop. The kinetic energy of
the system after the collision is 0, since the speeds of both carts are zero.
Before the collision the kinetic energy of the system was 1⁄2mAvA

2 � 1⁄2mBvB
2.

Both 1⁄2mAvA
2 and 1⁄2mBvB

2 are always positive numbers. Their sum cannot
equal zero (unless both vA and vB are zero, in which case there would be
no collision and not much of a problem). The kinetic energy of the system
is not conserved in this collision in which the bodies stick together, while
momentum is conserved. In fact, no collision in which the bodies stick to-
gether will show conservation of kinetic energy. It applies only to the col-
lision of “perfectly hard” bodies that bounce back from each other.

The law of conservation of kinetic energy, then, is not as general as the
law of conservation of momentum. If two bodies collide, the kinetic energy
may or may not be conserved, depending on the type of collision. It is con-
served if the colliding bodies do not crumple or smash or dent or stick to-
gether or heat up or change physically in some other way. Bodies that re-
bound without any such change are called perfectly elastic, whether they are
billiard balls or subatomic particles. Collisions between them are called per-
fectly elastic collisions. In perfectly elastic collisions, both momentum and ki-
netic energy are conserved.
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FIGURE 5.14 Christian Huygens (1629–1695)
was a Dutch physicist and inventor. He devised
an improved telescope with which he discovered
a satellite of Saturn and saw Saturn’s rings clearly.
Huygens was the first to obtain the expression 
for centripetal acceleration (v 2/R ); he worked 
out a wave theory of light; and he invented a 
pendulum-controlled clock. Huygens’ reputation
would undoubtedly have been greater had he 
not been overshadowed by his contemporary,
Newton. 
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But most collisions are not perfectly elastic, and kinetic energy is not
conserved. Thus, the sum of the 1⁄2mv2 values after the collision is less than
that before the collision. Depending on how much kinetic energy is “lost,”
such collisions might be called “partially elastic” or “perfectly inelastic.”
The loss of kinetic energy is greatest in perfectly inelastic collisions, when
the colliding bodies remain together.

Collisions between steel ball bearings, glass marbles, hardwood balls, bil-
liard balls, or some rubber balls (silicone rubber) are almost perfectly elas-
tic, if the colliding bodies are not damaged in the collision. The total ki-
netic energy after the collision might be as much as, say, 96% of this value
before the collision. Examples of perfectly elastic collisions are found only
in collisions between atoms or subatomic particles. But all is not lost—we
shall see how to deal with inelastic collisions also.

5.7 LEIBNIZ AND THE CONSERVATION LAW

Gottfried Wilhelm Leibniz (1646–1716) extended conservation ideas to
phenomena other than collisions. For example, when a stone is thrown
straight upward, its kinetic energy decreases as it rises, even without any
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FIGURE 15.15 Gottfried Wilhelm
Leibniz (1646–1716), a contempo-
rary of Newton, was a German
philosopher and diplomat and advi-
sor to Louis XIV of France and Pe-
ter the Great of Russia. Indepen-
dently of Newton, Leibniz invented
the method of mathematical analysis
called calculus. A long public dispute
resulted between the two great men
concerning the priority of ideas. 
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collision. At the top of the trajectory, kinetic energy is zero for an instant.
Then it reappears and increases as the stone falls. Leibniz wondered
whether something applied or given to a stone at the start is somehow stored
as the stone rises, instead of being lost. His idea would mean that kinetic
energy is just one part of a more general and really conserved quantity.

It was a hint that was soon followed up, with excellent results—once
more an illustration of how science advances by successive innovators im-
proving on partial truths.
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WHAT IS CONSERVED? THE DEBATE BETWEEN
DESCARTES AND LEIBNIZ

René Descartes believed that the total
quantity of motion in the Universe did 
not change. He wrote in his Principles of
Philosophy:

It is wholly rational to assume that God,
since in the creation of matter He im-
parted different motions to its parts, and
preserves all matter in the same way and
conditions in which He created it, so He
similarly preserves in it the same quan-
tity of motion.

Descartes proposed to define the quan-
tity of motion of an object as the product
of its mass and its speed. As you saw in Sec-
tion 5.3, this product is a conserved quan-
tity only if there are no outside forces.

Gottfried Wilhelm Leibniz was aware
of the error in Descartes’ ideas on motion.
In a letter in 1680 he wrote:

M. Descartes’ physics has a great defect;
it is that his rules of motion or laws of
nature, which are to serve as the basis,
are for the most part false. This is dem-
onstrated. And his great principle, that
the quantity of motion is conserved in
the world, is an error.

FIGURE 5.16 René Descartes (1596–1650) was
the most important French scientist of the sev-
enteenth century. In addition to his early con-
tribution to the idea of momentum conserva-
tion, he is remembered by scientists as the
inventor of coordinate systems and the graph-
ical representation of algebraic equations.
Descartes’ system of philosophy, which used the
deductive structure of geometry as its model, 
is still influential. 
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5.8 WORK

In everyday language, pitching, catching, and running on the baseball field
are “playing,” while using a computer, harvesting in a field, or tending to
an assembly line are “working.” However, in the language of physics, “work”
has been given a rather special definition, one that involves physical con-
cepts of force and displacement instead of the subjective ones of reward or
accomplishment. It is more closely related to the simple sense of effort or
labor. The work done on an object is defined as the product of the force ex-
erted on the object times the displacement of the object along the direction of the
force. (You will see in Chapter 6 one origin of this definition in connection
with the steam engine.)

When you move the hand and arm to throw a baseball, you exert a large
force on it while it moves forward for about 1 m. In doing so, you (i.e.,
your muscles) do a large amount of work, according to the above defini-
tion. By contrast, in writing or in turning the pages of a book you exert
only a small force over a short distance. This does not require much work,
as the term “work” is understood in physics.

Suppose you have to lift boxes from the floor straight upward to a table
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FIGURE 5.17 Major League base-
ball pitcher Mike Hampton. 
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at waist height. Here the language of common usage and that of physics
both agree that you are doing work. If you lift two identical boxes at once,
you do twice as much work as you do if you lift one box. If the table were
twice as high above the floor, you would do twice as much work to lift a
box to it. The work you do depends on both the magnitude of the force you
must exert on the box and the distance through which the box moves in the
direction of the force. Note that the work you do on a box does not de-
pend on how long it takes to do your job.

We can now define the work W done on an object by a force F more
precisely as the product of the magnitude F of the force and the distance
d that the object moves in the direction of F while the force is being exerted;
in symbols,

W � Fd

Note that work is a scalar quantity; it has only a magnitude but not a di-
rection. As an example, while you are lifting a box weighing 100 N upward
through 0.8 m you are applying a force of 100 N to the box. The work you
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FIGURE 5.18
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have done on the box to move it through the dis-
tance is 100 N � 0.8 m � 80 N � m.

From the definition of work, it follows that no
work is done if there is no displacement. No matter
how hard you push on a wall, no work is done if the
wall does not move. Also, by our definition, no work
is done if the only motion is perpendicular to the di-

rection of the force. For example, suppose you are carrying a book bag.
You must pull up against the downward pull of gravity to keep the bag at
a constant height. But as long as you are standing still you do no work on
the bag. Even if you walk along with it steadily in a horizontal line, the
only work you do is in moving it forward against the small resisting force
of the air.

5.9 WORK AND KINETIC ENERGY

Work is a useful concept in itself. The concept is most useful in under-
standing the concept of energy. There are a great many forms of energy, in
addition to kinetic energy discussed in Section 5.6. A few of them will be
discussed in this and succeeding chapters. We will define them, in the sense
of describing how they can be measured and how they can be expressed al-
gebraically. We will also discuss how energy changes from one form to an-
other. The general concept of energy is difficult to define. But to define
some particular forms of energy is easy enough. The concept of work helps
greatly in making such definitions.

The chief importance of the concept of work is that work represents an amount
of energy transformed from one form to another. For example, when you throw
a ball you do work on it. While doing so, you transform chemical energy,
which your body obtains from food and oxygen, into energy of motion of
the ball. When you lift a stone (doing work on it), you transform chemi-
cal energy into what is called gravitational potential energy (discussed in
the next section). If you release the stone, the Earth pulls it downward (does
work on it); gravitational potential energy is transformed into kinetic en-
ergy. When the stone strikes the ground, it compresses the ground below
it (does work on it), and its kinetic energy is transformed into heat and into
work done to deform the ground on which it lands. In each case, the work
is a measure of how much energy is transferred.

The form of energy called kinetic energy is the simplest to deal with.
We can use the definition of work, W � Fd, together with Newton’s laws
of motion, to get an expression of this form of energy. Imagine that you

5.9 WORK AND KINETIC ENERGY 235

More generally, the definition of
mechanical work is W � Fd cos �,
where � is the angle between the
vectors F and d. So, if � � 90°,
cos � � 0, and W � 0; if � � 0°,
cos � � 1, and W � Fd.
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exert a constant net force F on an object of mass m. This force accelerates
the object over a distance d in the same direction as F from rest to a speed
v. Using Newton’s second law of motion, we can show that

Fd � 1⁄2mv2.

(The details of this derivation are given in the Student Guide, “Doing Work
on a Sled.”)

Fd is the expression for the work done on the object by whatever agency
exerted the force F. The work done on the object equals the amount of en-
ergy transformed from some form into the energy of motion, the kinetic
energy, of the object. The symbol KE is often used to represent kinetic en-
ergy. By definition, then

KE � 1⁄2mv2.

The expression 1⁄2mv2 relates directly to the concept of work and so pro-
vides a useful expression for the energy of motion.

The equation Fd � 1⁄2mv2 was obtained by considering the case of an ob-
ject initially at rest. In other words, the object had an initial kinetic energy
of zero. The relation can be extended to hold also for an object already in
motion when the net force is applied (e.g., a bat hitting a moving ball). In
that case, the work done on the object still equals the change in its kinetic
energy from its initial to its final value

Fd � �(KE ).

The quantity �(KE ) is, by definition, equal to (1⁄2mv2)final � (1⁄2mv2)initial.
Work is defined as the product of a force and a distance. Therefore, its

units in the mks system are newtons � meters or newton-meters: A newton-
meter is given a special name. It is also called a joule (symbol J) in honor
of James Prescott Joule, the nineteenth-century physicist famous for his ex-
periments showing that heat is a form of energy (Chapter 6). The joule is
the unit of work or of energy, when force is measured in newtons and dis-
tance in meters. When force is measured in dynes and distance in centi-
meters, the unit of work or energy is dynes � centimers. A dyne-centimeter
is also given a special name: erg.

5.10 POTENTIAL ENERGY

As you saw in the previous section, doing work on an object can increase
its kinetic energy. Work also can be done on an object without increasing
its kinetic energy. For example, while you lifted that box up to the table in
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Section 5.8 at a small, constant speed, kinetic energy remains constant. But
you were doing work on the box. By doing work you are using your body’s
store of chemical energy. Into what form of energy is it being transformed?

The answer, as Leibniz suggested, is that there is “energy” somehow as-
sociated with height above the Earth. This energy is now called gravita-
tional potential energy. Lifting a box or a book higher and higher increases
the gravitational potential energy associated with the lifted object. You can
see clear evidence of this effect when, say, you pick up a book from the
floor, lift it to a certain height, and then let it drop. The gravitational po-
tential energy is transformed rapidly into the kinetic energy of a fall. In
general terms, suppose a force F is used to displace an object upward a dis-
tance d, without changing its KE. Then, the increase in gravitational po-
tential energy, symbolized by �(PE )grav, is

�(PE )grav � Fapplied � d

� �Fgrav � d.

Potential energy can be thought of as stored energy. As the book falls, its
gravitational potential energy decreases while its kinetic energy increases
correspondingly. When the book reaches its original level, all of the grav-
itational potential energy stored during the lift will have been transformed
into kinetic energy.

Many useful applications follow from this idea of potential or stored en-
ergy. For example, a steam hammer used by construction crews is driven
upward by high-pressure steam (thus gaining potential energy). When the
steam supply stops, the hammer drops, the gravitational potential energy
is converted into kinetic energy. Another example is the use of energy from
electric power plants during low-demand periods to pump water into a high
reservoir. When there is a large demand for electricity later, the water is
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FIGURE 5.19 Object (a book) at rest, falling, and coming to rest again.
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allowed to run down and drive the electric generators, recouping the stored
energy for use.

There are forms of potential energy other than gravitational. For exam-
ple, if you stretch a rubber band or a spring, you increase its elastic poten-
tial energy. When you release the rubber band, it can deliver the stored en-
ergy to a projectile in the form of kinetic energy. Nearly all of the work
done in blowing up an elastic balloon is also stored as potential energy.

Other forms of potential energy are associated with other kinds of forces.
In an atom, the negatively charged electrons are attracted by the positively
charged nucleus. If an externally applied force pulls an electron away from
the nucleus, the electric potential energy increases. If, then, the electron is
freed of the applied forces and moves back toward the nucleus, the poten-
tial energy decreases as the electron’s kinetic energy increases. Or, if two
magnets are pushed together with north poles facing, the magnetic potential
energy increases. When released, the magnets will move apart, gaining ki-
netic energy as they lose potential energy.

Where is the potential energy located in all these cases? It is easy to
think at first that it “belongs” to the body that has been moved. But with-
out the presence of the other object (the Earth, the nucleus, the other mag-
net) neither would work be needed for steady motion, nor would there be
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FIGURE 5.20 Two forms of potential energy (in
an extended spring and in a pair of magnets).

FIGURE 5.21 Chemical energy (ultimately
from the Sun) is stored in rice and converted
into work by the farmer who cultivates the
crop. 
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any increase in potential energy. Rather, action on the object would in-
crease only the kinetic energy of the object on which work was done. We
must conclude that the potential energy belongs not to one body, but to the
whole system of interacting bodies involved! This is evident in the fact that
the potential energy gained is available to any one or to all of these inter-
acting bodies. For example, either of the two magnets would gain all the
kinetic energy just by releasing it and holding the other in place. Or sup-
pose you could fix the book somehow to a hook in space that would hold
it fixed there. The Earth would then “fall” up toward the book, being at-
tracted to it. Eventually the Earth would gain just as much kinetic energy
at the expense of stored potential energy as the book would if it were free
to fall to the Earth.

The increase in gravitational potential energy “belongs” to the Earth–
book system, not the book alone. The work is done by an “outside” agent

(you), increasing the total energy of the Earth–book
system. When the book falls, it is responding to
forces exerted by one part of the system on another.
The total energy of the system does not change; it is
converted from PE to KE. This is discussed in more
detail in the next section.

5.11 CONSERVATION OF MECHANICAL ENERGY

In Section 5.9, you learned that the amount of work done on an object is
equal to the amount of energy transformed from one form to another. For
example, the chemical energy of muscles is transformed into the kinetic en-
ergy of a thrown ball. The work you have done while throwing the ball is
equal to the energy you have given up from your store of chemical energy.
This statement in the first sentence implies that the amount of energy in-
volved during an interaction does not change; only its form changes. This
is particularly obvious in motions where no “outside” force is applied to a
mechanical system.

While a stone falls freely, for example, the gravitational potential energy
of the stone–Earth system is continually transformed into kinetic energy.
Neglecting air friction, the decrease in gravitational potential energy is, for
any portion of the path, equal to the increase in kinetic energy. Consider a
stone thrown upward, which we will call the positive direction. Between
any two points in its path, the increase in gravitational potential energy
equals the decrease in kinetic energy. Consider a stone rising upward after
being thrown in the upward direction. After it leaves your hand, the only
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In fact, during the fall of the
book, as initially postulated, the
Earth would be moving a little
toward the falling book. Why
don’t we observe this?
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force applied is Fgrav (neglect external forces such as friction). The gravita-
tional force is pointing downward in the negative direction. The work done
by this force (with d positive for upward displacements) is

�Fgrav d � �(PE )grav

� ��KE.

In words, these equations state that the work done by gravity as the stone
rises against it results in an increase in potential energy but a decrease in
kinetic energy—the stone slows down. This relationship can be rewritten as

�(KE ) � �(PE )grav � 0,

or, still more concisely, as

�(KE � PEgrav) � 0.

If (KE � PEgrav) represents the total mechanical energy of the system (con-
sisting here of the stone and the Earth), then the change in the system’s to-
tal mechanical energy is zero, provided there is no outside work added to the
system (e.g., a strong wind acting on the stone). In other words, when outside
work is zero, the total mechanical energy of a system, (KE � PEgrav), re-
mains constant; it is conserved.

A similar statement can be made for a vibrating guitar string. While the
string is being pulled away from its unstretched position, the string–guitar

system gains elastic potential energy. When the
string is released, the elastic potential energy de-
creases while the kinetic energy of the string in-
creases. The string coasts through its unstretched
position and becomes stretched in the other direc-
tion. Its kinetic energy then decreases as the elastic
potential energy increases. As it vibrates, there is a
repeated transformation of elastic potential energy

into kinetic energy and back again. The string loses some mechanical en-
ergy; for example, sound waves radiate away. Otherwise, the decrease in
elastic potential energy over any part of the string’s motion would be ac-
companied by an equal increase in kinetic energy, and vice versa:

�(PE )elastic � ��(KE ),
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The equations in this section are
valid only if friction is negligi-
ble. We shall extend the range
later to include friction, which
can cause the conversion of me-
chanical energy into heat energy.
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or

��(PE )elastic � �(KE ).

In such an ideal case, the total mechanical energy (KE � PEelastic) remains
constant; it is conserved.

Galileo’s experiment with the pendulum (Section 3.1) can also be de-
scribed in these terms. The gravitational potential energy is determined by
the height to which the pendulum was originally pulled. That potential en-
ergy is converted to kinetic energy at the bottom of the swing and back to
potential energy at the other side. Since the pendulum retains its initial en-
ergy, it will stop temporarily (KE � 0, PE � max) only when it returns to
its initial height.

Adding Work

You have seen that the potential energy of a system can be transformed
into the kinetic energy of some part of the system, and vice versa. Suppose
that an amount of work W is done on part of the system by some external
force. Then the energy of the system is increased by an amount equal to
W. Consider, for example, a suitcase–Earth system. You must do work on
the suitcase to pull it away from the Earth up to the second floor. This
work increases the total mechanical energy of the Earth–suitcase system. If
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FIGURE 5.22
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you yourself are included in the system, then your internal chemical en-
ergy decreases in proportion to the work you do. Therefore, the total
energy of the lifter � suitcase � Earth system does not change, though of
course the energy is redistributed among the parts of the system.

Relationship to Newton’s Laws of Motion

The law of conservation of energy can be derived from Newton’s laws of
motion (although Newton himself did not do this). Therefore, it tells noth-
ing that could not, in principle, be computed directly from Newton’s laws
of motion. However, there are situations where there is simply not enough
information about the forces involved to apply Newton’s laws, or where it
would be inconvenient to try to measure them. It is in these cases that 
the law of conservation of mechanical energy demonstrates its maximum
usefulness.

A perfectly elastic collision is a good example of a situation where we
often cannot simply apply Newton’s laws of motion. For such collisions,
we cannot easily measure the force that one object exerts on the other. We
do know that during the actual collision among perfectly elastic bodies, the
objects distort one another. The distortions are produced against elastic
forces. Thus, some of the combined kinetic energy of the objects is trans-
formed into elastic potential energy as they distort one another. Then elas-
tic potential energy is transformed back into kinetic energy as the objects
separate. In an ideal case, both the objects and their surroundings are ex-
actly the same after colliding as they were before.

However, the law of conservation of mechanical energy involves only the
total energy of the objects before and after the collision. It does not try to
give the kinetic energy of each object separately. So it is incomplete knowl-
edge, but useful nevertheless. You may recall that the law of conservation
of momentum also supplies incomplete but useful knowledge. It can be
used to find the total momentum of elastic objects in collision, but not the
individual momentum vectors. In Section 5.6 you saw how conservation of
momentum and conservation of mechanical energy together limit the pos-
sible outcomes of perfectly elastic collisions. (As often in physics, two or
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more laws together show the limits of what science can say about phe-
nomena.) For two colliding objects, these two restrictions are enough to
give an exact solution for the two velocities after collision. For more com-
plicated systems, conservation of energy remains important. Scientists usu-
ally are not interested in the detailed motion of every part of a complex
system. They are not likely to care, for example, about the motion of every
molecule in a rocket exhaust. Rather, they may want to know only about
the exhaust’s overall thrust and temperature. These can be found from the
overall conservation laws.

5.12 FORCES THAT DO NO WORK

In Section 5.8, the work done on an object was defined as the product of
the magnitude of the force F applied to the object and the magnitude of the
distance d in the direction of F through which the object moves while 
the force is being applied. In all the examples so far, the object moved in
the same direction as that of the force vector.

Usually, the direction of motion and the direction of the force are not
the same. Let us revisit the example we briefly mentioned before (end of
Section 5.8). Suppose you carry a book bag at constant speed horizontally,
so that its kinetic energy does not change. Since there is no change in the
book bag’s energy, you are doing no work on it (by the definition of work).
You do apply a force on the book bag, and the bag does move through a
distance. But here the applied force and the distance the bag moves are at
right angles. You exert a vertical force on the bag upward to balance its
weight. But it moves horizontally, with you. Here, an applied force F is ex-
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FIGURE 5.24 During its contact
with a golf club, a golf ball is dis-
torted. As the ball moves away from
the club, and while the ball recov-
ers its normal spherical shape, its
elastic potential energy is trans-
formed into (additional) kinetic en-
ergy. 
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erted on an object while the object moves at right angles to the direction
of the force. Therefore, F has no component in the direction of d and so
the force does no work. This statement agrees entirely with the idea of work
in physics as energy being transformed from one form to another. Since the book
bag’s speed is constant, its kinetic energy is constant. Since its distance from
the Earth is constant, its gravitational potential energy is constant. There-
fore, there is no transfer of mechanical energy. (Nevertheless, your arm
does tire as you carry the book bag horizontally. The reason for this is that
muscles are not rigid. They are constantly relaxing and tightening up again.
This requires chemical energy, even though no work is done on the bag.)

A similar reasoning, but not so obvious, applies to a satellite in a circu-
lar orbit. The speed and the distance from the Earth are both constant.
Therefore, the kinetic energy and the gravitational potential energy are
both constant, and there is no energy transformation. For a circular orbit,
the centripetal force vector is perpendicular to the tangential direction of
motion at any instant. No work is being done on the satellite. But to put
an artificial satellite into a circular orbit to start with requires work. Once
it is in orbit, however, the KE and PE stay constant, and no further work
is done on the satellite.

However, if the satellite’s orbit is eccentric, the force vector is generally
not perpendicular to the direction of motion. In such cases, energy is con-
tinually transformed between kinetic and gravitational potential forms. The
total energy of the system (satellite and Earth) remains of course constant.

Situations where the net force is exactly perpendicular to the motion are
as rare as situations where the force and motion are in exactly the same di-
rection. What about the more usual case, involving some angle between
the force and the motion?
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FIGURE 5.25 A balanced rock (Mo-
jave Desert): potential energy wait-
ing to be converted. 
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In general, the work done on an object depends on how far the body
moves in the direction of the force. As stated before, the equation W � Fd
properly defines work only if d is the distance the body moves in the di-
rection of the force. The gravitational force is directed down. So only the
distance down determines the amount of work done by Fgrav. Change in
gravitational potential energy depends only on change in height, at least
near the Earth’s surface. For example, consider raising a suitcase from the
first floor to the second floor of a building. The same increase in PEgrav of
the suitcase–Earth system occurs regardless of the path by which the suit-
case is raised. Also, each path requires the same amount of work.

More generally, change in PEgrav depends only on change of position.
The details of the path followed in making the change make no difference
at all. The same is true for changes in elastic potential energy, electric po-
tential energy, etc. The changes depend only on the initial and final posi-
tions, and not on the path taken between these positions.

An interesting conclusion follows from the fact that change in PEgrav de-
pends only on change in height. For example, consider a child on a slide.
Starting from the top position, the gravitational potential energy decreases
as his/her altitude decreases. If frictional forces are vanishingly small, all
the work the Earth’s pull does on him/her goes into transforming PEgrav
into KE. Therefore, the increases in KE depend only on the decreases in
altitude. In other words, the child’s speed when he/she reaches the ground
will be the same (absent friction) whether he/she slides down or jumps off
the top.

A similar principle holds for satellites in orbit and for electrons in TV
tubes. In the absence of losses to parts outside the system, the change in
kinetic energy depends only on the initial and final positions, and not on

5.12 FORCES THAT DO NO WORK 245

FIGURE 5.26 The change in kinetic energy de-
pends only on the initial and final positions, and
not on the path taken between them.
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the path taken between them. This principle gives great simplicity to the
use of physical laws, as you will see when you study gravitational and elec-
tric fields in Chapter 10.

SOME NEW IDEAS AND CONCEPTS

conservation law law of conservation of 
elastic collision momentum (LCM)
isolated system mechanical energy
joule momentum
kinetic energy Newtonian world machine
law of conservation of kinetic energy potential energy
law of conservation of mass system
law of conservation of mechanical energy work
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STUDY GUIDE QUESTIONS

5.1 Conservation of Mass

1. Why did scientists look for conservation laws?
2. True or false: Mass is conserved in a closed system only if there is no chemi-

cal reaction in the system.
3. If 50 cm3 of alcohol is mixed with 50 cm3 of water, the mixture amounts to

only 98 cm3. An instrument pack weighs much less on the Moon than on Earth.
Are these examples of contradictions to the law of conservation of mass?

4. Which one of the following statements is true?
(a) Lavoisier was the first person to believe that the amount of material in the

Universe does not change.
(b) Mass is measurably increased when heat enters a system.
(c) A closed system was used to establish the law of conservation of mass 

experimentally.
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5. Five grams (5 g) of a red fluid at 12°C having a volume of 4 ml are mixed in
a closed bottle with 10 g of a blue fluid at 5°C having a volume of 8 ml. On
the basis of this information only, what can you be sure of about the resulting
mixture?

5.2 Collisions

1. Descartes defined the quantity of motion of an object as the product of its mass
and its speed. Is his quantity of motion conserved as he believed it was? If not,
how would you modify his definition so the quantity of motion would be con-
served?

2. Two carts collide head-on and stick together. In which of the following cases
will the carts be at rest immediately after the collision?

Cart A Cart B

Mass Speed before Mass Speed before
(kg) (m/s) (kg) (m/s)

(a) 2 3 2 3
(b) 2 2 3 3
(c) 2 3 3 2
(d) 2 3 1 6

5.3 Conservation of Momentum

1. State the law of conservation of momentum in terms of
(a) a change in the total momentum of a system;
(b) the total initial momentum and final momentum;
(c) the individual parts of a system.

2. Under what condition is the law of conservation of momentum valid?
3. Which of the following has the least momentum? Which has the greatest 

momentum?
(a) a pitched baseball;
(b) a jet plane in flight;
(c) a jet plane taxiing toward the terminal.

4. A girl on ice skates is at rest on a horizontal sheet of smooth ice. As a result
of catching a rubber ball moving horizontally toward her, she moves at 2 cm/s.
Give a rough estimate of what her speed would have been:
(a) if the rubber ball were thrown twice as fast;
(b) if the rubber ball had twice the mass;
(c) if the girl had twice the mass;
(d) if the rubber ball were not caught by the girl, but bounced off and went

straight back with no change of speed.
5. A boy and a girl are on ice skates at rest near each other. The boy throws a

ball to the girl in a straight line. Does he move? If so, in what way and why?
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After she catches the ball, she throws it back to him in a high arc. Does she
move? If so, in what way and why?

5.4 Momentum and Newton’s Laws of Motion

1. Since the law of conservation of momentum can be derived from Newton’s
laws, what good is it?

2. Explain why a cannon shooting a cannon ball must experience a recoil.
3. What force is required to change the momentum of an object by 50 kg m/s in

15 s?

5.5 Isolated Systems

1. Define what is meant by a “closed” or “isolated” system for the purpose of the
law of conservation of mass; for the purpose of the law of conservation of mo-
mentum.

2. Explain whether or not each of the following can be considered an isolated
system:
(a) a baseball thrown horizontally, after it leaves the thrower’s hand;
(b) a space shuttle orbiting the Earth;
(c) the Earth and the Moon.

3. Three balls in a closed system have the following masses and velocities:
ball A: 4 kg, 8 m/s left;
ball B: 10 kg, 3 m/s up;
ball C: 8 kg, 4 m/s right.

Using the principles of mass and momentum conservation, what can you dis-
cover about the final condition of the system after the balls have come to rest
in the system? What cannot be discovered?

5.6 Elastic Collisions

1. Which phrases correctly complete the statement? Kinetic energy is conserved:
(a) in all collisions;
(b) whenever momentum is conserved;
(c) in some collisions;
(d) when the colliding objects are not too hard.

2. Under what condition does the law of conservation of kinetic energy hold?
3. Explain why the conservation laws of kinetic energy and momentum are both

sometimes needed to describe the outcome of a collision of two bodies.
4. Is the law of conservation of kinetic energy as general as the law of conserva-

tion of momentum? Explain.
5. Kinetic energy is never negative because:

(a) scalar quantities are always positive;
(b) it is impossible to draw vectors with negative length;
(c) speed is always greater than zero;
(d) kinetic energy is proportional to the square of the speed.
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5.7 Leibniz and the Conservation Law

1. How would Leibniz have explained the apparent disappearance of the quan-
tity 1⁄2 mv2 in the following situations?
(a) during the upward motion of a thrown object;
(b) when the object strikes the ground.

2. Give an example of a situation in which momentum is conserved but kinetic
energy is not conserved.

5.8 Work

1. If a force of magnitude F is exerted on an object while the object moves a dis-
tance d in the direction of the force, the work done on the object is:
(a) F; (b) Fd; (c) F/d; (d) 1⁄2 Fd2.

2. Give two examples of situations in which a force is exerted on an object but
no work is done.

5.9 Work and Kinetic Energy

1. The kinetic energy of a body of mass m moving at a speed v is given by the
expression:
(a) 1⁄2 mv; (b) 1⁄2 mv2; (c) mv2; (d) 2mv2; (e) m2v2.

2. What is the general relationship between work and energy?
3. You lift a book from the floor and put it on a shelf.

(a) What happens to the work that you put into lifting the book?
(b) Can the work ever be turned into kinetic energy? Explain how.

5.10 Potential Energy

1. Name some forms of potential energy. Describe a situation for each of these
in which the potential energy would be greater than zero.

2. A stone of mass m falls a vertical distance d, pulled by its weight Fgrav � mg,
where g is the acceleration of gravity. The decrease in gravitational potential
energy during the fall is:
(a) md; (b) mg; (c) mgd; (d) 1⁄2 md2; (e) d.

3. When you compress a coil spring, you do work on it. The elastic potential 
energy:
(a) disappears; (b) breaks the spring; (c) increases; (d) decreases.

4. Two electrically charged objects repel one another. To increase the electric po-
tential energy, you must:
(a) make the objects move faster;
(b) move one object in a circle around the other object;
(c) attach a rubber band to the objects;
(d) pull the objects farther apart;
(e) push the objects closer together.

5. A pendulum bob is swinging back and forth. Where is the kinetic energy of
the bob the greatest? Where is it the least?

STUDY GUIDE QUESTIONS 249

3637_CassidyTX_05  6/19/02  12:53 PM  Page 249



5.11 Conservation of Mechanical Energy

1. As a stone falls frictionlessly:
(a) its kinetic energy is conserved;
(b) its gravitational potential energy is conserved;
(c) its kinetic energy changes into gravitational potential energy;
(d) no work is done on the stone;
(e) there is no change in the total energy.

2. In which position is the elastic potential energy of a vibrating guitar string
greatest? In which position is its kinetic energy greatest?

3. If a guitarist gives the same amount of elastic potential energy to a bass string
and to a treble string, which one will gain more speed when released? (The
mass of 1 m of bass string is greater than that of 1 m of treble string.)

4. Describe the changes in kinetic energy and potential for the system of the two
colliding pendula observed at the Royal Society, as described in Section 5.6.

5.12 Forces That Do No Work

1. How much work is done on a satellite during each revolution if its mass is m,
its period is T, its speed is v, and its orbit is a circle of radius R?

2. Two skiers were together at the top of a hill above a ski jump. While one skier
skied down the slope and went off the jump, the other had a change of mind
and rode the ski lift back down. Compare their changes in gravitational po-
tential energy.

3. A third skier went directly down a straight slope next to the ski jump. How
would this skier’s speed at the bottom compare with that of the skier who went
off the jump?

4. No work is done (select one):
(a) on a heavy box when it is pushed at constant speed along a rough hori-

zontal floor;
(b) on a nail when it is hammered into a board;
(c) when there is no component of force parallel to the direction of motion;
(d) when there is no component of force perpendicular to the direction of 

motion.

DISCOVERY QUESTIONS

1. In the examples in this chapter we carefully neglected the effects of friction
and air resistance. How would friction and air resistance affect the mechani-
cal energy of a pendulum or a flying baseball? How would they affect the con-
servation of momentum?

2. A child is swinging on a swing. She asks you to push her higher.
(a) Using the concepts in this chapter, explain why pushing her makes her go

higher.
(b) What is the best part of the swing to exert a push? Why?
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3. Using the laws of conservation of momentum and energy, explain why cyclists
should wear helmets and football players should wear padding.

4. Discuss the conversion between kinetic and potential forms of energy in the
system of a planet orbiting the Sun.

5. Furniture movers are paid for their work in moving furniture. In which of the
following cases is work, as defined in physics, not done by them or the truck
on the furniture?
(a) A piano is carried downstairs.
(b) The piano is lifted onto a truck.
(c) The truck accelerates to 50 mi/hr in 30 s.
(d) The truck hits an ice patch and skids at constant speed for 2 s.
(e) The truck hits an obstacle and comes to rest.

6. (a) Why can ocean liners or airplanes not turn corners sharply?
(b) In the light of your knowledge of the relationship between momentum and

force, comment on reports about so-called unidentified flying objects
(UFOs) turning sharp corners in full flight.

7. The philosopher John Locke (1632–1704) proposed a science of human na-
ture that was strongly influenced by Newton’s physics. In Locke’s atomistic
view, elementary ideas (“atoms”) are produced by elementary sensory experi-
ences and then drift, collide, and interact in the mind. Thus, the formation of
ideas was only a special case of the universal interactions of particles.

Does such an approach to the subject of human nature seem reasonable to
you? What argument for and against this sort of theory can you think of?

Quantitative

1. A person who lifts a 10-N book a distance d of 0.8 m straight up does 8 J of
work. How much work would the person do if the book is lifted up 1.6 m?

2. The kinetic energy of a ball on a tabletop increases from 10 J to 20 J. How
much work is done on it?

3. One joule (1 J) of work is put into lifting a pendulum bob from the zero-
energy position. After it is let go, the kinetic energy at one point was found to
be 0.25 J. What is the potential energy at that point?

4. A freight car of mass 105 kg travels at 2.0 m/s and collides with a motionless
freight car of mass 1.5 � 105 kg on a horizontal track. The two cars lock and
roll together after impact.
(a) Using the law of conservation of momentum, find the velocity of the two

cars after collision.
(b) Using the result from (a), find the total kinetic energy of the two cars af-

ter the collision, and compare it with the total kinetic energy before the
collision. Is this an example of an elastic collision?

(c) Which quantities are conserved in this collision, and which are not?
5. A 1-kg billiard ball moving on a pool table at 0.8 m/s collides head-on with

the cushion along the side of the table. The collision can here be regarded as
perfectly elastic. What is the momentum of the ball:
(a) before impact?
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(b) after impact?
(c) What is the change in momentum of the ball?
(d) Is the momentum of the ball conserved?
(e) Is the kinetic energy of the ball conserved?
(f ) If the duration of the collision is 0.01 s, what average force does the cush-

ion experience?
6. A system consists of three elastic bodies with masses of 4 g, 6 g, and 8 g. They

are squeezed together at rest at a single point and then released. They fly away
from each other under the influence of the elastic forces, which are assumed
equal for each. The 4-g body is moving with a velocity of 20 cm/s north, and
the 6-g body is moving at 3 cm/s east. What is the velocity of the 8-g body?

7. Calculate the kinetic energy of a car and driver traveling at 100 km/hr (about
60 mi/hr). The mass of the car and driver is about 1000 kg. How did they ob-
tain this kinetic energy? Where does it go when the driver puts on the brakes
and comes to a stop? Where does it go if the car collides with another?
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