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A. WAVES

8.1 WHAT IS A WAVE?

The world is continually criss-crossed by waves of all sorts. Water waves,
whether giant rollers in the middle of the ocean or gently formed rain rip-
ples on a still pond, are sources of wonder or pleasure. If the Earth’s crust
shifts, violent waves in the solid Earth cause tremors thousands of kilome-
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ters away. A musician plucks a guitar string, and sound waves pulse against
the ears. Wave disturbances may come in a concentrated bundle, like the
shock front from an airplane flying at supersonic speeds. Or the distur-
bances may come in succession like the train of waves sent out from a
steadily vibrating source, such as a bell or a string.

All of these examples are mechanical waves, in which bodies or particles
physically move back and forth. There are also wave disturbances in elec-
tric and magnetic fields. Such waves are responsible for what we experi-
ence as X rays, visible light, or radio waves. In all cases involving waves,
however, the effects produced depend on the flow of energy, not matter, as
the wave moves forward. Waves are cases of energy transfer without mat-
ter transfer.

So far in this text, you have considered motion in terms of individual
particles or other objects. In this chapter, you will study the cooperative
motion of collections of particles in “continuous media,” oscillating back
and forth as the mechanical waves pass by. You will see how closely related
are the ideas of particles and waves used to describe events in nature. Then
we shall deal with the properties of light and other electromagnetic waves.

8.2 THE PROPERTIES OF WAVES

To introduce some necessary terms to discuss the fascinating world of waves,
suppose that two people are holding opposite ends of a taut rope. Suddenly
one person snaps the rope up and down quickly once. That “disturbs” the
rope and puts a hump in it which travels along the rope toward the other
person. The traveling hump is one kind of a wave, called a pulse.

Originally, the rope was motionless. The height above ground of each
point on the rope depended only upon its position along the rope and did
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FIGURE 8.1 Waves crashing on the
shore.
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not change in time. But when one person snaps the rope, a rapid change
is created in the height of one end. This disturbance then moves away from
its source, down the rope to the other end. The height of each point on
the rope now depends also upon time, as each point eventually oscillates
up and down and back to the initial position, as the pulse passes.

The disturbance is thus a pattern of displacement moving along the rope.
The motion of the displacement pattern from one end of the rope toward
the other is an example of a wave. The hand snapping one end is the source
of the wave. The rope is the medium in which the wave moves.

Consider another example. When a pebble falls into a pool of still liq-
uid, a series of circular crests and troughs spreads over the surface. This
moving displacement pattern of the liquid surface is a wave. The pebble is
the source; the moving pattern of crests and troughs is the wave; and the
liquid surface is the medium. Leaves or other objects floating on the sur-
face of the liquid bob up and down as each wave passes. But they do not
experience any net displacement on the average. No material has moved
from the wave source along with the wave, either on the surface or among
the particles of the liquid—only the energy and momentum contained in
the disturbance have been transmitted. The same holds for rope waves,
sound waves in air, etc.

As any one of these waves moves through a medium, the wave produces
a changing displacement of the successive parts of the medium. Thus, we
can refer to these waves as waves of displacement. If you can see the medium
and recognize the displacements, then you can easily see waves. But waves
also may exist in media you cannot see, such as air; or they may form as
disturbances of a state you cannot detect with your unaided eyes, such as
pressure or an electric field.

You can use a loose spring coil (a Slinky) to demonstrate three different
kinds of motion in the medium through which a wave passes. First, move
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FIGURE 8.2 The transverse distur-
bance moves in the horizontal
plane of the ground, rather than in
the vertical plane.
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the end of the spring from side to side, or up and down as in Figure 
8.3 (a). A wave of side-to-side or up-and-down displacement will travel
along the spring. Now push the end of the spring back and forth, along
the direction of the spring itself, as in sketch (b). A wave of back-and-forth
displacement will travel along the spring. Finally, twist the end of the spring
quickly clockwise and counterclockwise, as in sketch (c). A wave of angu-
lar displacement will begin to travel along the spring. (See also the sug-
gested laboratory exploration on waves in the Student Guide.)

Waves like those in (a), in which the displacements are perpendicular to
the direction the wave travels, are called transverse waves. Waves like those
in (b), in which the displacements are in the direction the wave travels, are
called longitudinal waves. Waves like those in (c), in which the displace-
ments are twisting in a plane perpendicular to the direction the wave trav-
els, are called torsional waves.

All three types of wave motion can be set up in solids. In fluids, how-
ever, transverse and torsional waves die out very quickly and usually can-
not be produced at all, except on the surface. Therefore, sound waves in
air and water are longitudinal. The molecules of the medium are displaced
back and forth along the direction in which the sound energy travels.

It is often useful to make a graph on paper, representing the wave pat-
terns in a medium. This is of course easy to do for transverse waves, but
not for longitudinal or torsional waves. But there is a way out. For exam-
ple, the graph in Figure 8.4 represents the pattern of compressions at a given
moment as a (longitudinal) sound wave goes through the air. The graph line
goes up and down because the graph represents a snapshot of the increase
and decrease in density of the air along the path of the wave. It does not
represent an up-and-down motion of the molecules in the air themselves.

To describe completely transverse waves, such as those in ropes, you must
specify the direction of displacement. When the displacement pattern of a
transverse wave is along one line in a plane perpendicular to the direction

334 8. WAVE MOTION

Transverse

Longitudinal

(a)

(b)

(c)
Torsional

FIGURE 8.3 “Snapshots” of three
types of waves on a spring. In (c),
the small markers have been put
on the top of each coil in the
spring.
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of motion of the wave, the wave is said to be polarized. See the diagrams in
Figure 8.5. For waves on ropes and springs, you can observe the polariza-
tion directly. In Section 8.18 you will see that for light waves, for example,
polarization can have important effects.

All three kinds of waves—longitudinal, transverse, and torsional—have
an important characteristic in common. The disturbances move away from
their sources through the media and continue on their own (although their
amplitude may diminish owing to energy loss to friction and other causes).
We stress this particular characteristic by saying that these waves propagate.
This means more than just that they “travel” or “move.” An example will
clarify the difference between waves that propagate and those that do not.
You may have seen one of the great wheat plains of the Middle West,
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FIGURE 8.4 (a) “Snapshot representation of a sound wave progressing to the right. The
dots represent the density of air molecules. (b) Graph of air pressure, P, versus position, x,
at the instant of the snapshot.

A. Unpolarized wave on a rope

B. Polarized wave on a rope

FIGURE 8.5 Polarized/unpolarized waves on rope.
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Canada, or Central Europe. Such descriptions usually mention the “beau-
tiful, wind-formed waves that roll for miles across the fields.” The medium
for such a wave is the wheat, and the disturbance is the swaying motion of
the wheat. This disturbance does indeed travel, but it does not propagate;
that is, the disturbance does not originate at a source and then go on by it-
self. Rather, it must be continually fanned by the wind. When the wind
stops, the disturbance does not roll on, but stops, too. The traveling “waves”
of swaying wheat are not at all the same as rope and water waves. This
chapter will concentrate on waves that originate at sources and propagate
themselves through the medium. For the purposes of this chapter, waves
are disturbances which propagate in a medium.

8.3 WAVE PROPAGATION

Waves and their behavior are perhaps best studied by beginning with large
mechanical models and focusing our attention on pulses. Consider, for ex-
ample, a freight train, with many cars attached to a powerful locomotive,
but standing still. If the locomotive starts abruptly, its pull on the next
neighboring car sends a displacement wave running down the line of cars.
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FIGURE 8.6 A displacement.
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The shock of the starting displacement proceeds from the locomotive,
clacking through the couplings one by one. In this example, the locomo-
tive is the source of the disturbance, while the freight cars and their cou-
plings are the medium. The “bump” traveling along the line of cars is the
wave. The disturbance proceeds all the way from end to end, and with it
goes energy of displacement and motion. Yet no particles of matter are trans-
ferred that far; each car only jerks ahead a bit.

How long does it take for the effect of a disturbance created at one point
to reach a distant point? The time interval depends of course on the speed
with which the disturbance or wave propagates. This speed, in turn, depends
upon the type of wave and the characteristics of the medium. In any case,
the effect of a disturbance is never transmitted instantly over any distance.
Each part of the medium has inertia, and each portion of the medium is
compressible. So time is needed to transfer energy from one part to the next.

The same comments also apply to transverse waves. The series of
sketches in the accompanying diagram (Figure 8.7) represents a wave on a
rope. Think of the sketches as frames of a motion picture film, taken at
equal time intervals. We know that the material of the rope does not travel
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FIGURE 8.7 A rough representation of
the forces at the ends of a small section
of rope as a transverse pulse moves
past.
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along with the wave. But each bit of the rope goes through an up-and-
down motion as the wave passes. Each bit goes through exactly the same
motion as the bit to its left, except a little later.

Consider the small section of rope labeled X in the first diagram. When
the pulse traveling on the rope first reaches X, the section of rope just to
the left of X exerts an upward force on X. As X is moved upward, a restor-
ing downward force is exerted by the next section. The further upward X
moves, the greater the restoring forces become. Eventually, X stops mov-
ing upward and starts down again. The section of rope to the left of X now
exerts a restoring (downward) force, while the section to the right exerts
an upward force. Thus, the trip down is similar, but opposite, to the trip
upward. Finally, X returns to the equilibrium position when both forces
have vanished.

The time required for X to go up and down, that is, the time required
for the pulse to pass by that portion of the rope, depends on two factors.
These factors are the magnitude of the forces on X and the mass of X. To put
it more generally: The speed with which a wave propagates depends on 
the stiffness and on the density of the medium. The stiffer the medium, the
greater will be the force each section exerts on neighboring sections. Thus,
the greater will be the propagation speed. On the other hand, the greater
the density of the medium, the less it will respond to forces. Thus, the
slower will be the propagation. In fact, the speed of propagation depends
on the ratio of the stiffness factor and the density factor. The exact mean-
ing of stiffness and density factors is different for different kinds of waves
and different media. For tight strings, for example, the stiffness factor is
the tension T in the string, and the density factor is the mass per unit length,
m/l. The propagation speed v is given by

v � ��.

8.4 PERIODIC WAVES

Many of the disturbances we have considered so far have been sudden and
short-lived, set up by a brief motion like snapping one end of a rope or
suddenly displacing one end of a train. In each case, you see a single wave
running along the medium with a certain speed. As noted, this kind of wave
is called a pulse.

Now consider periodic waves, continuous regular rhythmic disturbances
in a medium, resulting from periodic vibrations of a source. A good example

T
�
m/l
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of an object in periodic vibration is a swinging pendulum. Neglecting the
effects of air resistance, each swing is virtually identical to every other swing,
and the swing repeats over and over again in time. Another example is the
up-and-down motion of a weight at the end of a coiled spring. In each case,
the maximum displacement from the position of equilibrium is called the
amplitude, A, as shown in the diagram below for the case of the spring. The
time taken to complete one vibration is called the period, T, usually given
in seconds. The number of vibrations per second is called the frequency, f.
Note that T and f are reciprocals, in the sense that T � 1/f.

What happens when a periodic vibration is applied to the end of a rope?
Suppose that the left end of a taut rope is fastened to the oscillating (vi-
brating) weight on a spring in Figure 8.8. As the weight vibrates up and
down, you observe a wave propagating along the rope (see the illustration).
The wave takes the form of a series of moving crests and troughs along the
length of the rope. The source executes “simple harmonic motion” up and
down. Ideally, every point along the length of the rope executes simple har-
monic motion in turn. The wave travels to the right as crests and troughs
follow one another. Each point or small segment along the rope simply os-
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FIGURE 8.8 Spring-mass system attached to a rope, and graph of the periodic motion.
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cillates up and down at the same frequency as the source. The amplitude
of the wave is represented by A. The distance between any two consecu-
tive crests or any two consecutive troughs is the same all along the length
of the rope. This distance, called the wavelength of the periodic wave, is
conventionally represented by the Greek letter � (lambda).

If a single pulse or a wave crest moves fairly slowly through the medium,
you can easily find its speed. In principle, all you need is a clock and a me-
ter stick. By timing the pulse or crest over a measured distance, you can
get the speed.

To be sure, it is not always so simple to observe the motion of a pulse
or a wave crest. But the speed of a periodic wave can be found indirectly,
if one can measure both its frequency and its wavelength. Here is how this
works. Using the example of the rope wave, we know that as the wave pro-
gresses, each point in the medium oscillates with the frequency and period
of the source. The diagram in Figure 8.8 illustrates a periodic wave mov-
ing to the right, as it might look in snapshots taken every one-quarter pe-
riod. Follow the progress of the crest that started out from the extreme left
at time t � 0. The time it takes this crest to move a distance of one wave-
length is equal to the time required for one complete oscillation of the
source, or equally of any point on the rope; that is, the crest moves one
wavelength � during one period of oscillation T. The speed v of the crest
is therefore given by the equation

v �

� .

All parts of the wave pattern propagate with the same speed along the rope.
Thus, the speed of any one crest is the same as the speed of the wave as a
whole. Therefore, the speed v of the wave is also given by

v �

� .�
�
T

wavelength
���
period of oscillation

�
�
T

distance moved
����
corresponding time interval
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But T � 1/f, where f � frequency. Therefore,

v � f �

or

wave speed � frequency � wavelength.

We can also write this relationship as

� �

or

f � .

These expressions show that, for waves of the same speed, the frequency
and wavelength are inversely proportional; that is, a wave of twice the fre-
quency would have only half the wavelength, and so on. This inverse rela-
tionship of frequency and wavelength will turn out to be very useful in later
chapters.

We now go to the last of the definitions that will help to understand how
waves behave. The diagram below represents a periodic wave passing
through a medium. Sets of points are marked that are moving “in step” as
the periodic wave passes. The crest points C and C� have reached maximum
displacement positions in the upward direction. The trough points D and
D� have reached maximum displacement positions in the downward direc-

v
�
�

v
�
f
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FIGURE 8.9 A “snapshot” of a periodic wave moving to the right. Letters indi-
cate sets of points with the same phase.
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tion. The points C and C� have identical displacements and velocities at any
instant of time. Their vibrations are identical and in unison. The same is
true for the points D and D�. Indeed there are infinitely many such pairs of
points along the medium that are vibrating identically when this wave passes.
Note that C and C� are a distance � apart, and so are D and D�.

Points that move “in step,” such as C and C�, are said to be in phase with
one another. Points D and D� also move in phase. Indeed, points separated
from one another by distances of �, 2�, 3�, . . . , and n� (n being any whole
number) are all in phase with one another. These points can be anywhere
along the length of the wave. They need not correspond with only the high-
est or lowest points. For example, points such as P, P�, P�, are all in phase
with one another. Each such point is separated by a distance � from the
next one in phase with it.

On the other hand, we can also see that some pairs of points are exactly
out of step. For example, point C reaches its maximum upward displace-
ment at the same time that D reaches its maximum downward displace-
ment. At the instant that C begins to go down, D begins to go up (and vice
versa). Points such as these are one-half period out of phase with respect to
one another. C and D� also are one-half period out of phase. Any two points
separated from one another by distances of 1⁄2�, 3⁄2�, 5⁄2�, etc., are one-half
period out of phase.

8.5 WHEN WAVES MEET

With the above definitions in hand, we can explore a rich terrain. So far,
we have considered single waves. What happens when two waves encounter
each other in the same medium? Suppose two waves approach each other
on a rope, one traveling to the right and one traveling to the left. The se-
ries of sketches in Figure 8.10 shows what would happen if you made this
experiment. The waves pass through each other without being modified.
After the encounter, each wave looks just as it did before and is traveling
onward just as it did before. (How different from two particles meeting
head-on!) This phenomenon of waves passing through each other un-
changed can be observed with all types of waves. You can easily see that
this is true for surface ripples on water. It must be true for sound waves
also, since two conversations can take place across a table without distort-
ing each other.

What happens during the time when the two waves overlap? The dis-
placements they provide add together at each point of the medium. The
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displacement of any point in the overlap region is just the sum of the dis-
placements that would be caused at that moment by each of the two waves
separately, as shown in Figure 8.10. Two waves travel toward each other on
a rope. One has a maximum displacement of 0.4 cm upward and the other
a maximum displacement of 0.8 cm upward. The total maximum upward
displacement of the rope at a point where these two waves pass each other
is 1.2 cm.

What a wonderfully simple behavior, and how easy it makes everything!
Each wave proceeds along the rope making its own contribution to the
rope’s displacement no matter what any other wave is doing. This property
of waves is called superposition. Using it, one can easily determine ahead of
time what the rope will look like at any given instant. All one needs to do
is to add up the displacements that will be caused by each wave at each
point along the rope at that instant. Another illustration of wave super-
position is shown in Figure 8.11. Notice that when the displacements are
in opposite directions, they tend to cancel each other.

The superposition principle applies no matter how many separate waves or
disturbances are present in the medium. In the examples just given, only
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FIGURE 8.10 The superposition of two rope pulses
at a point.
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two waves were present. But you would find by experiment that the su-
perposition principle works equally well for three, ten, or any number of
waves. Each makes its own contribution, and the net result is simply the
sum of all the individual contributions (see Figure 8.12).

If waves add as just described, then you can think of a complex wave as
the sum of a set of simple, sinusoidal waves. In 1807, the French mathe-
matician Augustin Jean Fourier advanced a very useful theorem. Fourier
stated that any continuing periodic oscillation, however complex, could 
be analyzed as the sum of simpler, regular wave motions. This, too, can be
demonstrated by experiment. The sounds of musical instruments can be
analyzed in this way also. Such analysis makes it possible to “imitate” in-
struments electronically, by combining and emitting just the right propor-
tions of simple vibrations, which correspond to pure tones.

344 8. WAVE MOTION

FIGURE 8.11 Superposition of two pulses on a rope.
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8.6 A TWO-SOURCE INTERFERENCE PATTERN

The figures on page 346 show ripples spreading from a vibrating source
touching the water surface in a “ripple tank.” The drawing shows a “cut-
away” view of the water level pattern at a given instant. The image on the
right introduces a phenomenon that will play an important role in later
parts of the course. It shows the pattern of ripples on a water surface dis-
turbed by two vibrating sources. The two small sources go through the up-
and-down motions together, that is, they are in phase. Each source creates
its own set of circular, spreading ripples. The image captures the pattern
made by the overlapping sets of waves at one instant. This pattern is called
an interference pattern.

You can interpret what you see here in terms of what you already know
about waves. You can predict how the pattern will change with time. First,
tilt the page so that you are viewing the interference pattern from a glanc-
ing direction. You will see more clearly some nearly straight gray bands.
One can explain this feature by the superposition principle.

To start with, suppose that two sources produce identical pulses at the
same instant. Each pulse contains one crest and one trough. (See Figure
8.16.) In each pulse the height of the crest above the undisturbed or aver-
age level is equal to the depth of the trough below. The sketches show the
patterns of the water surface after equal time intervals. As the pulses spread
out, the points at which they overlap move too. In the figure, a completely
darkened small circle indicates where a crest overlaps another crest. A half-
darkened small circle marks each point where a crest overlaps a trough. A
blank small circle indicates the meeting of two troughs. According to the
superposition principle, the water level should be highest at the completely
darkened circles (where the crests overlap). It should be lowest at the blank
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FIGURE 8.12 Sketch of complex waves as addition of two
or three waves.
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WAVES IN A RIPPLE TANK

When something drops in the water, it
produces periodic wave trains of crest and
troughs, somewhat as shown in the “cut-
away” drawing at the left below.

Figure 8.13 is an instantaneous photo-
graph of the shadows of ripples produced

by a vibrating point source. The crests and
troughs on the water surface show up in the
image as bright and dark circular bands. In
the photo below right, there were two point
sources vibrating in phase. The overlap-
ping waves create an interference pattern.

FIGURE 8.13–8.15 When an object drops in the water, it produces periodic wave trains of crests
and troughs, somewhat as shown in the “cut-away” drawing here. Also represented here are two
ripple patterns produced by one vibrating point source (left) and two point sources vibrating in
phase (right). The overlapping waves create an interference pattern.

FIGURE 8.14

FIGURE 8.13

FIGURE 8.15
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circles, and at average height at the half-darkened circles. Each of the
sketches in Figure 8.16 represents the spatial pattern of the water level at
a given instant.

At the points marked with darkened circles in the figure, the two pulses
arrive in phase. At the points indicated by open circles, the pulses also ar-
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FIGURE 8.16 Pattern produced when two cir-
cular pulses, each of a crest and a trough, spread
through each other. The very small circles indi-
cate the net displacement at those points (dark
circle � double height peak; half-dark circle �
average level; blank circle � double depth
trough).
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rive in phase. In either case, the waves reinforce each other, causing a greater
amplitude of either the crest or the trough. Thus, the waves are said to in-
terfere constructively. In this case, all such points are at the same distance
from each source. As the ripples spread, the region of maximum distur-
bance moves along the central dotted line in (a). At the points marked with
half-darkened circles, the two pulses arrive completely out of phase. Here
the waves cancel and so are said to interfere destructively, leaving the water
surface undisturbed.

When two periodic waves of equal amplitude are sent out instead of sin-
gle pulses, overlap occurs all over the surface, as is also shown in Figure
8.17. All along the central dotted line in Figure 8.17, there is a doubled
disturbance amplitude. All along the lines labeled N, the water height re-
mains undisturbed. Depending on the wavelength and the distance between
the sources, there can be many such lines of constructive and destructive
interference.

Now you can interpret the ripple tank interference pattern shown in the
previous drawings (Figures 8.14 and 8.15). The gray bands are areas where
waves cancel each other at all times; they are called nodal lines. These bands
correspond to lines labeled N in the drawing above. Between these bands
are other bands where crest and trough follow one another, where the waves
reinforce. These are called antinodal lines.
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FIGURE 8.17 Analysis of interference pattern. The dark circles indicate where crest is meeting crest,
the blank circles where trough is meeting trough, and the half-dark circles where crest is meeting trough.
The other lines of maximum constructive interference are labeled A0, A1, A2, etc. Points on these lines
move up and down much more than they would because of waves from either source alone. The lines
labeled N1, N2, etc. represent bands along which there is maximum destructive interference. Points on
these lines move up and down much less than they would because of waves from either source alone.
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Such an interference pattern is set up by overlapping waves from two
sources. For water waves, the interference pattern can be seen directly. But
whether visible or not, all waves, including earthquake waves, sound waves,
or X rays, can set up interference patterns. For example, suppose two loud-
speakers powered by the same receiver are working at the same frequency.
By changing your position in front of the loudspeakers, you can find the
nodal regions where destructive interference causes only a little sound to
be heard. You also can find the antinodal regions where a strong signal
comes through.

The beautiful symmetry of these interference patterns is not accidental.
Rather, the whole pattern is determined by the wavelength � and the source
separation S1S2. From these, you could calculate the angles at which the
nodal and antinodal lines spread out to either side of A0. Conversely, you
might know S1S2, and might have found these angles by probing around in
the two-source interference pattern. If so, you can calculate the wavelength
even if you cannot see the crests and troughs of the waves directly. This is
very useful, for most waves in nature cannot be directly seen. Their wave-
length has to be found by letting waves set up an interference pattern, prob-
ing for the nodal and antinodal lines, and calculating � from the geometry.

The above figure shows part of the pattern of the diagram in Figure 8.17.
At any point P on an antinodal line, the waves from the two sources arrive
in phase. This can happen only if P is equally far from S1 and S2, or if P is
some whole number of wavelengths farther from one source than from the
other. In other words, the difference in distances (S1P � S2P ) must equal
n�, � being the wavelength and n being zero or any whole number. At any
point Q on a nodal line, the waves from the two sources arrive exactly out
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FIGURE 8.18 Detail of interference pattern.
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of phase. This occurs because Q is an odd number of half-wavelengths (1⁄2�,
3⁄2�, 5⁄2�, etc.) farther from one source than from the other. This condition
can be written S1Q � S2Q � (n � 1⁄2)�.

The distance from the sources to a detection point may be much larger
than the source separation d. In that case, there is a simple relationship be-
tween the node position, the wavelength �, and the separation d. The wave-
length can be calculated from measurements of the positions of nodal lines.
(The details of the relationship and the calculation of wavelength are de-
scribed in the Student Guide for this chapter.)

This analysis allows you to calculate from simple measurements made
on an interference pattern the wavelength of any wave. It applies to water
ripples, sound, light, etc. You will find this method very useful later. One
important thing you can do now is find � for a real case of interference of
waves in the laboratory. This practice will help you later in finding the
wavelengths of other kinds of waves.

8.7 STANDING WAVES

If you and a partner shake both ends of a taut rope with the same frequency
and same amplitude, you will observe an interesting result. The interfer-
ence of the identical waves coming from opposite ends results in certain
points on the rope not moving at all! In between these nodal points, the
entire rope oscillates up and down. But there is no apparent propagation
of wave patterns in either direction along the rope. This phenomenon is
called a standing wave or a stationary wave. The remarkable thing behind
this phenomenon is that the standing oscillation you observe is really the
effect of two traveling waves.

To see this, let us start with a simpler case. To make standing waves on
a rope (or Slinky), there do not have to be two people shaking the oppo-
site ends. One end can be tied to a hook on a wall or to a door knob. The
train of waves sent down the rope by shaking one end back and forth will
reflect back from the fixed hook. These reflected waves interfere with the
new, oncoming waves, and it is this interference that can produce a stand-
ing pattern of nodes and oscillation. In fact, you can go further and tie both
ends of a string to hooks and pluck (or bow) the string. From the plucked
point a pair of waves go out in opposite directions, and are then reflected
from the ends. The interference of these reflected waves that travel in op-
posite directions can produce a standing pattern just as before. The strings
of guitars, violins, pianos, and all other stringed instruments act in just this
fashion. The energy given to the strings sets up standing waves. Some of
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the energy is then transmitted from the vibrating string to the body of the
instrument; the sound waves sent forth from there are at essentially the
same frequency as the standing waves on the string.

The vibration frequencies at which standing waves can exist depend on
two factors. One is the speed of wave propagation along the string. The
other is the length of the string. A connection between the length of string
and the musical tone it can generate was recognized over 2000 years ago,
and contributed indirectly to the idea that nature is built on mathematical
principles. Early in the development of musical instruments, people learned
how to produce certain pleasing harmonies by plucking a string constrained
to different lengths by stops. Harmonies result if the string is plucked while
constrained to lengths in the ratios of small whole numbers. Thus, the
length ratio 2:1 gives the octave, 3:2 the musical fifth, and 4:3 the musical
fourth. This striking connection between musical harmony and simple
numbers (integers) encouraged the Pythagoreans to search for other nu-
merical ratios or harmonies in the Universe. This Pythagorean ideal
strongly affected Greek science, and many centuries later inspired much of
Kepler’s work. In a general form, the ideal flourishes to this day in many
beautiful applications of mathematics to physical experience.

The physical reason for the appearance of harmonious notes and the re-
lation between them were not known to the Greeks. But using the super-
position principle, we can understand and define the harmonic relation-
ships much more precisely. First, we must stress an important fact about
standing wave patterns produced by reflecting waves from the boundaries
of a medium. One can imagine an unlimited variety of waves traveling back
and forth. But, in fact, only certain wavelengths (or frequencies) can produce
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FIGURE 8.19 Time exposure: A vibrator at the left produces a wave train that runs along
the rope and reflects from the fixed end at the right. The sum of the oncoming and re-
flected waves is a standing wave pattern.
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standing waves in a given medium. In the example of a stringed instrument,
the two ends are fixed and so must be nodal points. This fact puts an 
upper limit on the length of standing waves possible on a fixed rope of
length l. Such waves must be those for which one-half wavelength just fits
on the rope (l � �/2). Shorter waves also can produce standing patterns,
having more nodes. But always, some whole number of one-half wavelengths
must just fit on the rope, so that l � n�/2. For example, in the first of the
three illustrations in Figure 8.20, the wavelength of the interfering waves,
�1, is just 2l. In the second illustration, �2 is 1⁄2(2l ); in the third, it is 1⁄3(2l ).
The general mathematical relationship giving the expression for all possi-
ble wavelengths of standing waves on a fixed rope is thus

�n � ,

where n is a whole number representing the harmonic. Or we can write
simply,

�n � .

That is, if �1 is the longest wavelength possible, the other possible wave-
lengths will be 1⁄ 2�1, 1⁄3�1, . . . (1/n)�1. Shorter wavelengths correspond to
higher frequencies. Thus, on any bounded medium, only certain frequencies of
standing waves can be set up. Since frequency f is inversely proportional to
wavelength, f � 1/�, we can rewrite the expression for all possible standing
waves on a plucked string as

fn � n.

1
�
n

2l
�
n
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FIGURE 8.20 Standing wave patterns:
first three nodes.
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VIBRATION OF A DRUM

FIGURE 8.21 A marked rubber “drumhead” vibrating in several of its possible modes. Here we
see side-by-side pairs of still photographs from three of the symmetrical modes and from an anti-
symmetrical mode.
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In other circumstances, fn may depend on n in some other way. The low-
est possible frequency of a standing wave is usually the one most strongly
present when the string vibrates after being plucked or bowed. If f1 repre-
sents this lowest possible frequency, then the other possible standing waves
would have frequencies 2f1, 3f1, . . . , nf1. These higher frequencies are
called “overtones” of the “fundamental” frequency f1. On an “ideal” string,
there are in principle an unlimited number of such frequencies, but each
being a simple multiple of the lowest frequency.

In real media, there are practical upper limits to the possible frequen-
cies. Also, the overtones are not exactly simple multiples of the fundamental
frequency; that is, the overtones are not strictly “harmonic.” This effect is
still greater in systems more complicated than stretched strings. In a flute,
saxophone, or other wind instrument, an air column is put into standing
wave motion. Depending on the shape of the instrument, the overtones
produced may not be even approximately harmonic.

As you might guess from the superposition principle, standing waves of
different frequencies can exist in the same medium at the same time. A
strongly plucked guitar string, for example, oscillates in a pattern which is
the superposition of the standing waves of many overtones. The relative
oscillation energies of the different instruments determine the “quality” of
the sound they produce. Each type of instrument has its own balance of
overtones. This is why a violin sounds different from a trumpet, and both
sound different from a soprano voice, even if all are sounding at the same
fundamental frequency.

8.8 WAVE FRONTS AND DIFFRACTION

Unlike baseballs, bullets, and other pieces of matter in motion, waves can
go around corners. For example, you can hear a voice coming from the
other side of a hill, even though there is nothing to reflect the sound to
you. You are so used to the fact that sound waves do this that you scarcely
notice it. This spreading of the energy of waves into what you might ex-
pect to be “shadow” regions is called diffraction.

Once again, water waves will illustrate this behavior most clearly. From
among all the arrangements that can result in diffraction, we will concen-
trate on two. The first is shown in the second photograph in Figure 8.22.
Straight water waves (coming from the bottom of the second picture) are
diffracted as they pass through a narrow slit in a straight barrier. Notice
that the slit is less than one wavelength wide. The wave emerges and spreads
in all directions. Also notice the pattern of the diffracted wave. It is basi-
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cally the same pattern a vibrating point source would set up if it were placed
where the slit is.

The bottom photograph shows a second barrier arrangement. Now there
are two narrow slits in the barrier. The pattern resulting from superposi-
tion of the diffracted waves from both slits is the same as that produced by
two point sources vibrating in phase. The same kind of result is obtained
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FIGURE 8.22 (a) Diffraction of water ripples
around the edge of a barrier; (b) diffraction of rip-
ples through a narrow opening; (c) diffraction of
ripples through two narrow openings.

(a) (b)

(c)
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when many narrow slits are put in the barrier; that is, the final pattern just
matches that which would appear if a point source were put at the center
of each slit, with all sources in phase.

One can describe these and all other effects of diffraction if one under-
stands a basic characteristic of waves. This characteristic was first stated by
Christiaan Huygens in 1678 and is now known as Huygens’ principle. To un-
derstand it one first needs the definition of a wave front.

For a water wave, a wave front is an imaginary line along the water’s sur-
face, with every point along this line in exactly the same stage of vibration;
that is, all points on the line are in phase. For example, crest lines are wave
fronts, since all points on the water’s surface along a crest line are in phase.
Each has just reached its maximum displacement upward, is momentarily
at rest, and will start downward an instant later.

Since a sound wave spreads not over a surface but in three dimensions,
its wave fronts form not lines but surfaces. The wave fronts for sound waves
from a very small source are very nearly spherical surfaces, just as the wave
fronts for ripples, made by a very small source of waves on the surface of
water, are circles.

Huygens’ principle, as it is generally stated today, is that every point on a
wave front may be considered to behave as a point source for waves generated in
the direction of the wave’s propagation. As Huygens said:

There is the further consideration in the emanation of these waves,
that each particle of matter in which a wave spreads, ought not to
communicate its motion only to the next particle which is in the
straight line drawn from the [source], but that it also imparts some
of it necessarily to all others which touch it and which oppose them-
selves to its movement. So it arises that around each particle there
is made a wave of which that particle is the center.

The diffraction patterns seen at slits in a barrier are certainly consistent
with Huygens’ principle. The wave arriving at the barrier causes the water
in the slit to oscillate. The oscillation of the water in the slit acts as a source
for waves traveling out from it in all directions. When there are two slits
and the wave reaches both slits in phase, the oscillating water in each slit
acts like a point source. The resulting interference pattern is similar to the
pattern produced by waves from two point sources oscillating in phase.

Consider what happens behind the breakwater wall as in the aerial pho-
tograph of the harbor. By Huygens’ principle, water oscillation near the
end of the breakwater sends circular waves propagating into the “shadow”
region.
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(a) (b) (c)

FIGURE 8.23 (a) Each point on a wave front can be thought of as a point source of waves. The waves
from all the point sources interfere constructively only along their envelope, which becomes the new
wave front. (b) When part of the wave front is blocked, the constructive interference of waves from
points on the wave front extends into “shadow” region. (c) When all but a very small portion of a wave
front is blocked, the wave propagating away from that small portion is nearly the same as that from a
point source.

FIGURE 8.24 Reflection, refraction, and diffraction of
water waves around an island. 
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You can understand all diffraction patterns if you keep both Huygens’
principle and the superposition principle in mind. For example, consider a
slit wider than one wavelength. In this case, the pattern of diffracted waves
contains no nodal lines unless the slit width is about � (see the series of
images in Figure 8.25).

Figure 8.26 helps to explain why nodal lines appear. There must be points
like P that are just � farther from side A of the slit than from side B; that
is, there must be points P for which distance AP differs from distance BP
by exactly �. For such a point, AP and OP differ by one-half wavelength,
�/2. By Huygens’ principle, you may think of points A and O as in-phase
point sources of circular waves. But since AP and OP differ by �/2, the two
waves will arrive at P completely out of phase. So, according to the super-
position principle, the waves from A and O will cancel at point P.
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(a)

(b)

(c)

(d)

FIGURE 8.25 Single-slit diffraction of water waves
with slits of different sizes.
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This argument also holds true for the pair of points consisting of the
first point to the right of A and the first to the right of O. In fact, it holds
true for each such matched pair of points, all the way across the slit. The
waves originating at each such pair of points all cancel at point P. Thus, P
is a nodal point, located on a nodal line. On the other hand, if the slit width
is less than �, then there can be no nodal point. This is obvious, since no
point can be a distance � farther from one side of the slit than from the other.
Slits of widths less than � behave nearly as point sources. The narrower they
are, the more nearly their behavior resembles that of point sources.

One can compute the wavelength of a wave from the interference pat-
tern set up where diffracted waves overlap. (See the Student Guide for such
a calculation.) This is one of the main reasons for interest in the interfer-
ence of diffracted waves. By locating nodal lines formed beyond a set of
slits, you can calculate � even for waves that you cannot see. Moreover, this
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FIGURE 8.26 Diagram of a single slit showing how
nodal lines appear (see text).

FIGURE 8.27 Wave on rope reflected from a wall
to which it is attached.
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is one very important way of identifying a series of unknown rays as con-
sisting of either particles or waves.

For two-slit interference, the larger the wavelength compared to the dis-
tance between slits, the more the interference pattern spreads out. That is,
as � increases or d decreases, the nodal and antinodal lines make increas-
ingly large angles with the straight-ahead direction. Similarly, for single-
slit diffraction, the pattern spreads when the ratio of wavelength to the slit
width increases. In general, diffraction of longer wavelengths is more eas-
ily detected. Thus, when you hear a band playing around a corner, you hear
the bass drums and tubas better than the piccolos and cornets, even if they
actually are playing equally loudly.

8.9 REFLECTION

You have seen that waves can pass through one another and spread around
obstacles in their paths. Waves also are reflected, at least to some degree,
whenever they reach any boundary of the medium in which they travel.
Echoes are familiar examples of the reflection of sound waves. All waves
share the property of being capable of reflection. Again, the superposition
principle will help understand what happens when reflection occurs.

Suppose that one end of a rope is tied tightly to a hook securely fastened
to a massive wall. From the other end, a pulse wave is sent down the rope
toward the hook. Since the hook cannot move, the force exerted by the
rope wave can do no work on the hook. Therefore, the energy carried in
the wave cannot leave the rope at this fixed end. Instead, the wave bounces
back, is reflected, ideally with the same energy.

What does the wave look like after it is reflected? The striking result is
that the wave seems to flip upside down on reflection. As the wave comes 
in from left to right and encounters the fixed hook, it pulls up on it. By
Newton’s third law, the hook must exert a force on the rope in the oppo-
site direction while reflection is taking place. The details of how this force
varies in time are complicated, but the net effect is that an inverted wave
of the same form is sent back down the rope.

The three sketches in Figure 8.28 show the results of reflection of wa-
ter waves from a straight wall. You can check whether the sketches are ac-
curate by trying to reproduce the effect in a sink or bathtub. Wait until
the water is still, then dip your fingertip briefly into the water, or let a
drop fall into the water. In the upper part of the sketch, the outer crest is
approaching the barrier at the right. The next two sketches show the po-
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S S′

FIGURE 8.28 Two-dimensional circular wave re-
flecting from a wall.

(a) (b)

(c) (d)

FIGURE 8.29 Two-dimensional plane
wave reflecting from a wall.
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sitions of the crests after first one and then two of them have been re-
flected. Notice the dashed curves in the last sketch. They show that the
reflected wave appears to originate from a point S� that is as far behind
the barrier as S is in front of it. The imaginary source at point S� is called
the image of the source S.

Reflection of circular waves is studied first, because that is what you usu-
ally notice first when studying water waves. But it is easier to see a general
principle for explaining reflection by observing a straight wave front, re-
flected from a straight barrier. The ripple-tank photograph (Figure 8.32a)
shows one instant during such a reflection. (The wave came in from the
upper left at an angle of about 45°.) The sketches below indicate in more
detail what happens as the wave crests reflect from the straight barrier.

The description of wave behavior is often made easier by drawing lines
perpendicular to the wave fronts. Such lines, called rays, indicate the di-
rection of propagation of the wave. Notice Figure 8.30 for example. Rays
have been drawn for a set of wave crests just before reflection and just af-
ter reflection from a barrier. The straight-on direction, perpendicular to
the reflecting surface, is shown by a dotted line. The ray for the incident
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Ray

θi θr

FIGURE 8.30 Angles of incidence and reflection.

(a) (b)

P P

(c)

Parabola

Circle

Circle

FIGURE 8.31 Rays reflecting from concave surfaces (circular and parabolic).
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crests makes an angle �i with the straight-on direction. The ray for the re-
flected crests makes an angle �r with it. The angle of reflection �r is equal to
the angle of incidence �i ; that is,

�r � �i .

This is an experimental fact, which you can easily verify.
Many kinds of wave reflectors are in use today. One can find them in

radar antennae or infrared heaters. Figure 8.31 (a) and (b) shows how
straight-line waves reflect from two circular reflectors. A few incident and
reflected rays are shown. (The dotted lines are perpendicular to the bar-
rier surface.) Rays reflected from the half-circle (a) head off in all direc-
tions. However, rays reflected from a small segment of the circle (b) come
close to meeting at a single point. A barrier with the shape of a parabola
(c) focuses straight-line rays, quite precisely at a point—which is to say that
a parabolic surface reflects plane waves to a sharp focus. An impressive ex-
ample is a radio telescope. Its huge parabolic surface reflects faint radio
waves from space to focus on a detector. Another example is provided by
the dish used for satellite TV reception.

The wave paths indicated in the sketches could just as well be reversed.
For example, spherical waves produced at the focus become plane waves when
reflected from a parabolic surface. The flashlight and automobile headlamp
are familiar applications of this principle. In them, white-hot wires placed at
the focus of parabolic reflectors produce almost parallel beams of light.
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FIGURE 8.32 (a) Reflection of a water wave from a wall; (b) and (c) ripple tank photographs showing
how circular waves produced at the focus of a parabolic wall are reflected from the wall into straight
waves.

(a) (b) (c)
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One of the highly useful wave phenomena we
shall encounter in Chapter 12 is the propaga-
tion and reflection of electromagnetic waves,
such as light and microwaves. An example of
the latter, as a preview of the general useful-
ness of the idea of wave propagation, is Radar.

Radar (an acronym for Radio Detection
and Ranging) is an electromagnetic sensor
for detecting, locating, tracking, and identi-
fying various kinds of objects at various dis-
tances. The most popular form of radar sig-
nal is made up of short continual pulses, and
the shorter the width of this pulse, the more
accurate the radar is at locating the target

Radar, developed during World War II, is
credited with being the key technology that
prevented a victory by the German air force,
especially during its bombing campaign on
cities in England. It shifted the course of the
war, and forever changed the face of military,
astronomical, and weather technology.

Radar is now used for innumerable tasks,
all of which require some form of detection
at distance: police detection of speeders, air
traffic controllers following the path of air-
craft, satellite detection of topography on
Earth and on other bodies in the solar 
system—all utilize the basic principles of
radar. These principles rest on two funda-
mental effects of radio waves, the echo effect
and the Doppler shift.

The echo is a very familiar phenomenon—
shout out your name in a large empty room
and the walls seem to shout it back. This type
of echo results from the reflection of sound
waves off a surface. The same effect can be
obtained with radio waves, which travel at the
speed of ordinary (visible) light in space. A
pulse of radio waves sent out from an antenna
will reflect from any object it hits, and part
of the wave will return to where it originated.
The time it takes between the emission of the

pulse and the reception of the reflected part
of the pulse can be used to determine the dis-
tance between the point and the reflecting
surface. Thus the radar stations in England
could be alerted that a hostile aircraft was
present even if it was still far away, and fighter
planes could scramble to fight off the ex-
pected attack.

The Doppler shift, also common in every-
day life, occurs when waves of any kind are
emitted or reflected by a moving body.
(Everyone has experienced it as the shift in
frequency of a car horn or a train whistle
while in motion.) If waves sent out from a
point are reflected by a moving body, the re-
turning waves will appear to have a higher
frequency as the object moves toward the
original point, and a lower frequency as the
object moves away from it. Therefore mea-
suring the Doppler shift of reflected waves
can be used to determine quickly the speed
and direction of the reflecting surface.

Since these principles apply to sound
waves, it is possible to make a “sound radar,”
or Sonar. That device works well enough in
water, and has been used with great success
to detect and trace submarines. But sonar is
impractical for use in the air, because there,
ordinary sound waves travel less far, and their
echo would be too faint to be useful in pre-
cise detections.

After a radar transmitter has sent out a
short burst, or pulse, of radio waves, the
transmitter shuts off and a receiver is turned
on, measuring the time and Doppler shift of
the detected reflection. From monitoring the
movement of cars on Route 1 to mapping the
surface of Venus, radar has given us a new
way to see the world.

In a standard radar system there is a trans-
mitter, which produces a signal in the form
of electromagnetic energy that is sent to the

■ RADAR WAVES AND TECHNOLOGY
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FIGURE 8.33 Radar detection of an aircraft.

antenna. A radar antenna is commonly a par-
abolic reflector, with a small antenna placed
at the center of the parabola to illuminate the
surface of the reflector. The electromagnetic
energy is radiated from this surface in the
form of a narrow beam. When this electro-
magnetic beam passes over a target, the ob-
ject reflects an amount of the radiated energy
back to the radar, where a receiver filters and
amplifies the echoes. The single processor
then differentiates the signals obtained from
a target from those produced by clutter, such
as atmospheric effects. A computer then pro-
cesses this information and the output is dis-
played on a monitor. With the information
that is provided by the radar it is possible to
calculate the location of the target in terms
of range and angular direction.

Development of Radar

The scientific origins of radar can be found in
the work of the German physicist Heinrich

Hertz. Hertz showed, as Maxwell’s equations
had predicted, that radio waves exist, and in
the same way as light waves, are reflected from
metallic objects. However, not until the 1930s
did radar become a focus for scientific re-
search, largely in response to the fear of war.
The most important needs of a radar trans-
mitter are often conflicting. For example, to
guarantee the greatest accuracy a transmitter
must be powerful and have a wide bandwidth,
but at the same time it cannot be too heavy
or too large, to fit into an aircraft or ship. One
of the main objectives for researchers work-
ing on radar during World War II was to solve
these conflicts by developing a system that was
small enough to fit in fighter aircraft but
worked at higher frequencies.

The benefits of using microwaves, waves of
wavelength 1 m or less, in radar technology
had been recognized for some time. They in-
cluded greater accuracy, increased efficiency
at reducing clutter, and an expanded potential
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for discriminating between targets. The cav-
ity magnetron, which was invented in Britain
in 1939 at the University of Birmingham,
opened up the possibility of using microwaves
and was small enough to fit in the palm of a
hand. In 1940, as part of a transatlantic scien-
tific exchange, a prototype of the magnetron
was sent to America where it soon became the
basis for some of the most important work on
radar during World War II. As a direct spin-
off of this exchange, a new laboratory, known
as the Radiation Laboratory, was founded at
the Massachusetts Institute of Technology
that helped to develop more than 150 radar
systems between 1940 and 1950.

Current Uses of Radar Technology

Radar technology is utilized today in many
different ways. Armed forces all over the

world continue to use radar as a detector of
aircraft and ships, as they did in World War
II. However, it is now also used to distinguish
many different kinds of targets, to control
and guide weapons, and to provide informa-
tion on the damage caused by these weapons.
Sophisticated weather forecasting techniques
are also highly dependent on radar technol-
ogy in the form of remote sensing. Radar
technology is also crucial to civilian air traf-
fic control, where it provides information on
air traffic and weather conditions, as well as
a tool for guiding pilots in unfavorable
weather conditions.

Further Reading

R. Buderi, The Invention that Changed the
World (New York: Touchstone Books,
1998).

■ RADAR WAVES AND TECHNOLOGY (Continued )

8.10 REFRACTION

What happens when a wave propagates from one medium to another
medium in which its speed of propagation is different? Look at the simple
situation pictured in Figure 8.35. Two one-dimensional pulses approach a
boundary separating two media. The speed of the propagation in medium
1 is greater than it is in medium 2. Imagine the pulses to be in a light rope
(medium 1) tied to a relatively very heavy rope (medium 2). Part of each
pulse is reflected at the boundary. This reflected component is flipped up-
side down relative to the original pulse. (Recall the inverted reflection at a
hook in a wall discussed earlier. The heavier rope here tends to hold the
boundary point fixed in just the same way.) But what happens to that part
of the wave that continues into the second medium?

As shown in the figure, the transmitted pulses are closer together in
medium 2 than they are in medium 1. The reason is that the speed of the
pulses is less in the heavier rope. So the second pulse, while still in the light
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FIGURE 8.34 (a) Pulses encountering a boundary between two different media. (b) contin-
uous wave train crossing the boundary between two different media. In both cases, the speed
of propagation is less in medium 2.

λ1 λ2

1

V1 V2

2

(a) (b)

(a)

Water
Glass

(c)(b)

FIGURE 8.35 (a) Cross section of waves in a ripple tank; (b) ripples on
water (coming from the left) encounter the shallow region over the cor-
ner of a submerged glass plate; (c) ripples on water (coming from the
left) encounter a shallow region over a glass plate placed at an angle to
the wave fronts.
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rope, is catching up with the one that is already in the heavy rope. For the
same reason, each separate pulse is itself squeezed into a narrower form;
that is, when the front of a pulse has entered the region of less speed, the
back part of it is still moving ahead with greater speed.

Something of the same sort happens to a periodic wave at such a bound-
ary. This situation is pictured in Figure 8.35b. For the sake of simplicity,
assume that all of the wave is transmitted and none of it is reflected. Just
as the two pulses were brought closer and each pulse was squeezed and nar-
rowed, the periodic wave pattern is squeezed together, too. Thus, the wave-
length �2 of the transmitted wave is shorter than the wavelength �1 of the
incoming, or incident, wave.

Although the wavelength changes when the wave passes across the
boundary, the frequency of the wave cannot change. If the rope is unbro-
ken, the pieces immediately on either side of the boundary must go up and
down together. The frequencies of the incident and transmitted waves must,
then, be equal. We can simply label both of them f.

The wavelength, frequency, and speed relationship for both the incident
and transmitted waves can be written separately

�1 f � v1 and �2 f � v2.

Dividing one of these equations by the other and eliminating f :

� .

This equation tells us that the ratio of the wavelengths in the two media
equals the ratio of the speeds.

The same sort of thing happens when water ripples cross a boundary.
Experiments show that the ripples move more slowly in shallower water.
A piece of plate glass is placed on the bottom of a ripple tank to make the
water shallower there. This creates a boundary between the deeper and
shallower part (medium 1 and medium 2). Figure 8.35a shows the case
where this boundary is parallel to the crest lines of the incident wave. As
with rope waves, the wavelength of water waves in a medium is propor-
tional to the speed in that medium.

Water waves offer a possibility not present for rope waves. The crest lines
can approach the boundary at any angle, not only head-on. Photograph (c)
shows such an event. A ripple-tank wave approaches the boundary at an an-
gle. The wavelength and speed, of course, change as the wave passes across
the boundary. The direction of the wave propagation also changes. As each

v1
�
v2

�1
�
�2
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part of a crest line in medium 1 enters medium 2, its speed decreases, and
it starts to lag behind. In time, the directions of the whole set of crest lines
in medium 2 are changed from their directions in medium 1.

This phenomenon is called refraction. Refraction occurs whenever a wave
passes into a medium in which the wave velocity is different. In this case, the
wave fronts are turned (refracted) so that they are more nearly parallel to 
the boundary. (See Figures 8.35a and 8.35b.) This accounts for something
that you may have noticed if you have been at an ocean beach. No matter
in what direction the waves are moving far from the shore, when they come
near the beach that slopes gently into the deeper water, their crest lines are
nearly parallel to the shoreline. A wave’s speed is steadily reduced as it moves

into water that gets gradually more shallow. So the
wave is refracted continuously as if it were always
crossing a boundary between different media, as in-
deed it is. The refraction of sea waves, coming from
one direction, can be so great that wave crests can
curl around a very small island with an all-beach
shoreline and provide surf on all sides.
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FIGURE 8.36 Aerial photograph of the refraction of ocean waves approaching shore. 

The slowing of starlight by in-
creasingly dense layers of the
atmosphere produces refraction
that changes the apparent posi-
tion of the star.
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8.11 SOUND WAVES

Sound waves are mechanical disturbances that propagate through a me-
dium, such as the air. Typically, sound waves are longitudinal waves, pro-
ducing changes of density and pressure in the medium through which they
travel. The medium can be a solid, liquid, or gas. If the waves strike the
ear, they cause the ear drum to vibrate, which produces a signal in the
acoustic nerve that can produce the sensation of hearing. The biology and
psychology of hearing, as well as the physics of sound, are important to the
science of acoustics. Here, of course, we will concentrate on sound as an
example of wave motion. Sound has all the properties of wave motion con-
sidered so far. It exhibits reflection, refraction, diffraction, and the same re-
lations among frequency, wavelength, and propagation speed and interfer-
ence. Only the property of polarization is missing, because sound waves are
longitudinal, not transverse. In addition, sound waves travel faster in cold
air than in hot air because of the increased density of the medium, air, when
it is cold.

Vibrating sources for sound waves may be as simple as a tuning fork or
as complex as the human larynx with its vocal cords. Tuning forks and some
electronic devices produce a steady “pure tone.” Most of the energy in such
a tone is in simple harmonic motion at a single frequency. Frequency is of-
ten measured in units of hertz (Hz), where 1 Hz is one cycle (or oscilla-
tion) per second; 1 Hz � 1/s. (There is no unit for “cycle.”)

The normal human ear can hear sound waves with frequencies between
about 20 Hz and 15,000 Hz. Dogs can hear over a much wider range 
(15 Hz–50,000 Hz). Bats, porpoises, and whales generate and respond to
frequencies up to about 120,000 Hz.

Loudness (or “volume”) of sound is, like pitch, a psychological variable.
Loudness is strongly related to the intensity of the sound. Sound intensity
is a physical quantity. It is defined in terms of the energy carried by the
wave and is usually measured in the number of watts per square centime-
ter transmitted through a surface perpendicular to the direction of motion
of a wave front. The human ear can perceive a vast range of intensities 
of sound. Figure 8.37 illustrates this range. It begins at a level of 
10�16 W/cm2 (relative intensity � 1). Below this “threshold” level, the nor-
mal ear does not perceive sound. It is customary to measure loudness in
decibels (db). The number of decibels is 10 times the exponent in the rel-
ative intensity of the sound. Thus, a jet plane at takeoff, making a noise of
1014 relative intensity, is said to emit noise at the 140-db level.

Levels of noise intensity about 1012 times threshold intensity can be felt
as an uncomfortable tickling sensation in the normal human ear. Beyond
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that, the sensation changes to pain and may damage the unprotected ear.
Since many popular music concerts produce, in an auditorium, steady sound
levels at this intensity (and above it for the performers), there are many
cases of impaired hearing among people extensively exposed to such sound.

Often the simplest way of reducing noise is by absorbing it after it is pro-
duced but before it reaches your ears. Like all sound, noise is the energy
of back and forth motion of the medium through which the noise travels.
Noisy machinery can be muffled by padded enclosures in which the energy
of noise is changed to heat energy, which then dissipates. In a house, a thick
rug on the floor can absorb 90% of room noise. (A foot of fresh fluffy snow
is an almost perfect absorber of noise outdoors. Cities and countrysides are
remarkably hushed after a snowfall.)

It has always been fairly obvious that sound takes time to travel from
source to receiver. By timing echoes over a known distance, the French
mathematician Marin Mersenne in 1640 first computed the speed of sound
in air. It took another 70 years before William Derham in England, com-
paring the flash and noise from cannons across 20 km, came close to the
modern measurements. Sound in air at sea level at 20°C moves at about
344 m/s. As for all waves, the speed of sound waves depends on the prop-
erties of the medium: the temperature, density, and elasticity. Sound waves
generally travel faster in liquids than in gases, and faster still in solids. In
seawater, their speed is about 1500 m/s; in steel, about 5000 m/s; in quartz,
about 5500 m/s.

Interference of sound waves can be shown in a variety of ways. In a large
hall with hard, sound-reflecting surfaces, there will be “dead” spots. At these
spots, sound waves coming together after reflection tend to cancel each
other. Acoustic engineers must consider this in designing the shape, posi-
tion, and materials of an auditorium. Another interesting and rather dif-
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ferent example of sound interference is the phenomenon known as beats.
When two notes of slightly different frequency are heard together, they in-
terfere. This interference produces beats, a rhythmic pulsing of the sound.
Piano tuners and string players use this fact to tune two strings to the same
pitch. They simply adjust one string or the other until the beats disappear.

Refraction of sound by different layers of air explains why you some-
times cannot hear the thunder after seeing lightning. Similar refraction of
sound occurs in layers of water of different temperatures. Geologists use
the refraction of sound waves to study the Earth’s deep structure and to lo-
cate fossil fuels and minerals. Very intense sound waves are set up in the
ground (as by dynamite blasts). The sound waves travel through the Earth
and are received by detection devices at different locations. The path of
the waves, as refracted by layers in the Earth, can be calculated from the
relative intensities and times of sound received. From knowledge of the
paths, estimates can be made of the composition of the layers.

As mentioned, diffraction is a property of sound waves. Sound waves
readily bend around corners and barriers to reach the listener within range.
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FIGURE 8.38 Boston Symphony concert hall.
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Sound waves reflect, as do rope or water waves, wherever they encounter
a boundary between different media. The architectural features called
“whispering galleries” show vividly how sound can be focused by reflection
from curved surfaces. All these effects are of interest in the study of
acoustics. Moreover, the proper acoustical design of public buildings is now
recognized as an important function by all good architects.

So far in this chapter, you have studied the basic phenomena of me-
chanical waves, ending with the theory of sound propagation. The expla-
nations of these phenomena were considered the final triumph of New-
tonian mechanics as applied to the transfer of energy of particles in motion.
Most of the general principles of acoustics were discovered in the 1870s.
Since then, perhaps its most important influence on modern physics has
been its effect on the imagination of scientists. The successes of acoustics
encouraged them to take seriously the power of the wave viewpoint, even
in fields far from the original one—the mechanical motion of particles that
move back and forth or up and down in a medium.

We now turn to an especially important type of wave phenomenon—
light.

B. LIGHT

8.12 WHAT IS LIGHT?

The conviction that the world and everything in it consists of matter in mo-
tion drove scientists prior to the twentieth century to search for mechani-
cal models for light as well as heat; that is, they tried to imagine how the
effects of light, heat, and other phenomena could be explained in detail as
the action of material objects. For example, consider the way light bounces
off a mirror. A model for this effect might picture light as consisting of par-
ticles of matter that behave somewhat like tiny ping-pong balls. On the
other hand, light exhibits interference and diffraction, suggesting a model
involving waves. Such mechanical models were useful for a time, but in the
long run proved far too limited. Still, the search for these models led to
many new discoveries, which in turn brought about important changes in
science, technology, and society.

In most basic terms, light is a form of energy. The physicist can describe
a beam of light by stating measurable values of its speed, wavelength or
frequency, and intensity. But to scientists, as to all people, “light” also means
brightness and shade, the beauty of summer flowers and fall foliage, of red
sunsets, and of the canvases painted by masters. These are different ways
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of appreciating light. One way concentrates on light’s measurable aspects,
an approach enormously fruitful in physics and technology. The other way
concerns aesthetic responses to viewing light in nature or art. Still another
way of considering light deals with the biophysical process of vision.

These aspects of light are not easily separated. Thus, in the early his-
tory of science, light presented more subtle and more elusive problems than
did most other aspects of physical experience. Some Greek philosophers
believed that light travels in straight lines at high speed and contains par-
ticles that stimulate the sense of vision when they enter the eye. For cen-
turies after the Greek era, this particle model survived almost intact. Around
1500, Leonardo da Vinci, noting a similarity between sound echoes and the
reflection of light, speculated that light might have a wave character.

A decided difference of opinion about the nature of light emerged among
scientists of the seventeenth century. Some, including Newton, favored a
model largely based on the idea of light as a stream of particles. Others,
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FIGURE 8.39 Roman temple in
Evora, Portugal. Light beams travel
in straight lines, as shown by the
shadow lines. 
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including Huygens, supported a wave model. By the late nineteenth cen-
tury, there appeared to be overwhelming evidence in support of the wave
model. This part of the chapter will deal with the question: How accurate
is a wave model in explaining the observed behavior of light? The wave model
will be taken as a hypothesis, and the evidence that supports it examined.
Remember that any scientific model, hypothesis, or theory has two chief
functions: to explain what is known, and to make predictions that can be
tested experimentally. Both of these aspects of the wave model will be dis-
cussed. The result will be rather surprising. The wave model turns out to
work splendidly to this day for all properties of light known before the
twentieth century. But in Chapter 13 you will find that for some purposes
a particle model must be used. Then in Chapter 15 both models will be
combined, merging two apparently conflicting theories.

The ancient opinion, later proved by experiment, that light travels in
straight lines and at high speed has been mentioned. The daily use of mir-
rors shows that light can also be reflected. Light can also be refracted, and
it shows the phenomena of interference and diffraction, as well as other
phenomena characteristic of waves, such as dispersion, polarization, and
scattering. All of these characteristics lent strong support to the wave model
of light.

8.13 PROPAGATION OF LIGHT

There is ample evidence that light travels in straight lines. A shadow cast
by an object intercepting sunlight has well-defined outlines. Similarly, sharp
shadows are cast by smaller sources closer by. The distant Sun and the
nearby small source are approximate point sources of light. Such point
sources produce sharp shadows.

Images can also demonstrate that light travels in straight lines. Before
the invention of the modern camera with its lens system, a light-tight box
with a pinhole in the center of one face was widely used. As the camera ob-
scura (meaning “dark chamber” in Latin), the device was highly popular in
the Middle Ages. Leonardo da Vinci probably used it as an aid in his sketch-
ing. In one of his manuscripts he says that “a small aperture in a window
shutter projects on the inner wall of the room an image of the bodies which
are beyond the aperture.” He includes a sketch to show how the straight-
line propagation of light explains the formation of an image.

It is often convenient to use a straight line to represent the direction in
which light travels. The pictorial device of an infinitely thin ray of light is
useful for thinking about light. But no such rays actually exist. A light beam
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emerging from a good-sized hole in a screen is as wide as the hole. You
might expect that if you made the hole extremely small, you would get a
very narrow beam of light, ultimately just a single ray. This is not the case.
Diffraction effects, such as those observed for water and sound waves, ap-
pear when the beam of light passes through a small hole. So an infinitely
thin ray of light, although it is pictorially useful, cannot be produced in
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FIGURE 8.40 An attempt to produce a “ray” of light. To make the pictures, a parallel beam
of red light was directed through increasingly narrow slits to a photographic plate. Of course,
the narrower the slit, the less light gets through. This was compensated for by longer ex-
posures in these photographs. The slit widths were (a) 1.5 mm; (b) 0.7 mm; (c) 0.4 mm; 
(d) 0.2 mm; and (e) 0.1 mm.

(a) (b)

(d) (e)

(c)
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practice. But the idea can still be used in order to represent the direction in
which a train of waves in a beam of light is traveling.

The beam of light produced by a laser comes as close as possible to the
ideal case of a thin, parallel bundle of rays. As you will find in Chapter 14,
light is often produced by the action of electrons within the atoms of its
source. Lasers are designed in such a way that their atoms produce light in
unison with one another, rather than individually and at random, as in other
sources of light. As a result, light from a laser can yield a total beam of con-
siderable intensity, and one that is much more nearly monochromatic—
that is, of a single color—than light from any conventional source. In ad-
dition, since the individual wavelets from the atoms of a laser are produced
simultaneously, they are able to interfere with each other constructively to
produce a beam of light that is narrow and very nearly parallel. In fact, such
light spreads out so little that thin beams emitted by lasers on Earth, when
directed at the surface of the Moon 400,000 km away, have been found to
produce spots of light only 1 m in diameter on the Moon.

Given that light can be considered to travel in straight lines, can we tell
how fast it goes? Galileo discussed this problem in his Two New Sciences
(published in 1638). He pointed out that everyday experiences might lead
one to conclude that light propagates instantaneously. But these experi-
ences, when analyzed more closely, really show only that light travels much
faster than sound. For example, “when we see a piece of artillery fired, at
a great distance, the flash reaches our eyes without lapse of time; but the
sound reaches the ear only after a noticeable interval.”

But how do you really know whether the light moved “without lapse of
time” unless you have some accurate way of measuring the lapse of time?
Galileo went on to describe an experiment by which two people standing
on distant hills flashing lanterns might measure the speed of light. He con-
cluded that the speed of light is probably finite, not infinite. Galileo, how-
ever, was not able to estimate a definite value for it.

Experimental evidence was first successfully related to a finite speed for
light by a Danish astronomer, Ole Rœmer. Detailed observations of Jupiter’s
satellites had shown an unexplained irregularity in the times recorded be-
tween successive eclipses of the satellites by the planet. Such an eclipse was
expected to occur at 45 s after 5:25 a.m. on November 9, 1676 ( Julian cal-
endar). In September of that year, Rœmer announced to the Academy of
Sciences in Paris that the observed eclipse would be 10 min late. On No-
vember 9, astronomers at the Royal Observatory in Paris carefully studied
the eclipse. Though skeptical of Rœmer’s mysterious prediction, they re-
ported that the eclipse did occur late, just as he had foreseen.

Later, Rœmer revealed the theoretical basis of his prediction to the baf-
fled astronomers at the Academy of Sciences. He explained that the orig-
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inally expected time of the eclipse had been calculated from observations
made when Jupiter was near the Earth. But now Jupiter had moved farther
away. The delay in the eclipse occurred simply because light from the area
around Jupiter takes time to reach the Earth. Obviously, this time interval
must be greater when the relative distance between Jupiter and the Earth
in their orbits is greater. In fact, Rœmer estimated that it takes about 
22 min for light to cross the Earth’s own orbit around the Sun.

Shortly after this, the Dutch physicist Christian Huygens used Rœmer’s
data to make the first calculation of the speed of light. Huygens combined
Rœmer’s value of 22 min for light to cross the Earth’s orbit with his own
estimate of the diameter of the Earth’s orbit. (This distance could be esti-
mated for the first time in the seventeenth century, in good part as a result
of the advances in astronomy described in Chapter 2.) Huygens obtained
a value for the speed of light in space which, in modern units, is about 
2 � 108 m/s. This is about two-thirds of the currently accepted value. The
error in Huygens’ value was due mainly to Rœmer’s overestimate of the
time interval. Scientists now know that it takes light only about 16 min to
cross the Earth’s orbit.

The speed of light has been measured in many different ways since the
seventeenth century. The development of electronic devices in the twenti-
eth century allowed very precise measurements, making the speed of light
one of the most precisely measured physical constants known today. Be-
cause of the importance of the value of the speed of light in modern phys-
ical theories, physicists continue to improve their methods of measurement.

The most precise recent measurements indicate that the speed of light
in vacuum is 2.99792458 � 108 m/s. The uncertainty of this value is thought
to be about 1 m/s, or 0.000001%, the precision being limited only by the
precision to which lengths can be measured (times can be measured to sev-
eral orders of magnitude greater precision). The speed of light is usually
represented by the symbol c; for most purposes it is sufficient to use the
approximate value c � 3 � 108 m/s. Indeed, there has been general agree-
ment not to pursue endlessly the search for greater accuracy, and some 
physicists have accepted the speed of light (in vacuum) to be by definition
2.9979 � 108 m/s.

8.14 REFLECTION AND REFRACTION

What does each model of light predict will happen when light traveling in
one medium (e.g., air) hits the boundary of another medium (e.g., glass)?
The answers to this question depend on whether a particle or a wave the-
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ory of light is used. Here is an opportunity to test
which theory is better.

Reflection and refraction from the wave viewpoint
were discussed in Sections 8.9 and 8.10. Recall the
results obtained there and apply them to light:

1. A ray may be taken as the line drawn perpendicular to a wave’s crest
lines. Such a ray represents the direction in which a train of waves is
traveling.

2. In reflection, the angle of incidence (�i) is equal to the angle of reflec-
tion (�r).

3. Refraction involves a change of wavelength and speed of the wave as
it passes into another medium. When the speed decreases, the wave-
length decreases, and the ray bends in a direction toward a line per-
pendicular to the boundary. This bending toward the perpendicular is
observed, for example, when a ray of light passes from air to glass.

What about explaining the same observations by means of the particle
model? To test this model, first consider the nature of the surface of glass.
Though apparently smooth, it is actually a wrinkled surface. A powerful
microscope would show it to have endless hills and valleys. If particles of
light were at all similar to little balls of matter, then on striking such a wrin-
kled surface they would scatter in all directions. They would not be re-
flected and refracted as noted above. Therefore, Newton argued, there must
actually be “some feature of the body which is evenly diffused over its sur-
face and by which it acts upon the ray without immediate contact.” Obvi-
ously, in the case of reflection, the acting force would have to be one that
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The incident, reflected, and re-
fracted rays are all in the same
plane, a plane perpendicular to
the surface.

FIGURE 8.41 Two narrow beams
of light, coming from the upper
left, strike a block of glass. Can 
you account for all the observed 
effects? 
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repelled the particles of light. Similarly, a force that attracted light parti-
cles instead of repelling them could explain refraction. As a particle of light
approached a boundary of another medium, it would first have to over-
come the repelling force. If it did that, it would then meet an attractive
force in the medium that would pull it into the medium. Since the attrac-
tive force would be a vector with a component in the direction of the par-
ticle’s original motion, the particle’s speed would increase. If the ray of par-
ticles were moving at an oblique angle to the boundary, it would change
direction as it entered the medium, bending toward the line perpendicular
to the boundary. Notice that to make this argument we have had to make
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FIGURE 8.42 Diagrams illustrating reflection and refrac-
tion of light, viewed as waves and particles.
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an assumption about the size of Newton’s light “particles.” The particles
must be at least as small as the irregularities in the surface of a mirror. Sim-
ilarly, a concrete wall is quite rough, but a tennis ball rebounds from such
a wall almost exactly as light reflects from a mirror.

According to the particle model, therefore, you can make the following
statements about reflection and refraction:

1. A ray represents the direction in which the particles are moving.
2. In reflection, the angles of incidence and reflection are equal. This pre-

diction can be derived by applying the law of conservation of momen-
tum to particles repelled by a force as shown on the last sketch.

3. Refraction involves a change of speed of the particles as they enter an-
other medium. In particular, when an attractive power acts, the speed
increases, and the ray is bent into the medium.

Compare these features of the particle model with the corresponding
features of the wave model. The only difference is in the predicted speed
for a refracted ray. You observe that a ray is bent toward the perpendicular
line when light passes from air into water. The particle theory predicts that
light has a greater speed in the second medium. The wave theory predicts
that light has a lower speed.

You might think that it would be fairly easy to devise an experiment to
determine which prediction is correct. All one has to do is measure the
speed of light after it has entered water and compare it with the speed of
light in air. But in the late seventeenth and early eighteenth centuries, when
Huygens was arguing the wave model and Newton a particle model, no
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FIGURE 8.43 The surface of a mir-
ror, as shown by a scanning elec-
tron microscope. The surface is a
3-micron thick aluminum film. The
magnification here is nearly 26,000
times (one micron � 10�6 m).
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such experiment was possible. The only available way of measuring the
speed of light was an astronomical one. Not until the middle of the nine-
teenth century did Armand H.L. Fizeau and Jean B.L. Foucault measure
the speed of light in water. The results agreed with the predictions of the wave
model: The speed of light is less in water than in air.

The Foucault–Fizeau experiments of 1850 were widely regarded as driv-
ing the last nail in the coffin of the Newtonian particle theory of light, for,
by the time these experiments were done, most physicists had already ac-
cepted the wave model for other reasons. Some of these stemmed from the
work of the English scientist Thomas Young, to whom we now turn.

8.15 INTERFERENCE AND DIFFRACTION

Early in the nineteenth century, when Newton’s prestige still contributed
greatly to the support of the particle theory of light, Thomas Young re-
vived the wave theory of light. In experiments made between 1802 and
1804, Young found that light shows the phenomenon of interference de-
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FIGURE 8.44 Thomas Young (1773–1829) was
an English linguist, physician, and expert in
many fields of science. At the age of 14, he was
familiar with Latin, Greek, Hebrew, Arabic,
Persian, French, and Italian, and later was one
of the first scholars successful at decoding
Egyptian hieroglyphic inscriptions. He studied
medicine in England, Scotland, and Germany.
While still in medical school, he made original
studies of the eye and later developed the first
version of what is now known as the three-color
theory of vision. Young also did research in
physiology on the functions of the heart and
arteries and studied the human voice mecha-
nism, through which he became interested in
the physics of sound and sound waves. Young
then turned to optics and showed that many of
Newton’s experiments with light could be ex-
plained in terms of a simple wave theory of
light. This conclusion was strongly attacked by
some scientists in England and Scotland who
were upset by the implication that Newton
might have been wrong. 
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scribed in general for transverse waves in Section 8.6. The particle theory
of light could not easily explain the interference patterns produced by light.
Young’s famous “double-slit experiment” provided convincing evidence that
light does have properties that are explainable only in terms of waves.

Young’s experiment should be done in the laboratory, rather than only
talked about; we will describe it only briefly here. Basically, it involves split-
ting a single beam of light into two beams in order to ensure that they are
in phase. The split beams are then allowed to overlap, and the two wave
trains interfere, constructively in some places and destructively in others.
To simplify the interpretation of the experiment, assume that it is done with
light that has a single definite wavelength �.

Young used a black screen with a small hole punched in it to produce a
narrow beam of sunlight in a dark room. In the beam he placed a second
black screen with two narrow slits cut in it, close together. Beyond this
screen he placed a white screen. The light coming through each slit was
diffracted and spread out into the space beyond the screen. The light from
each slit interfered with the light from the other, and the interference pat-
tern showed on the white screen. Where interference was constructive,
there was a bright band on the screen. Where interference was destructive,
the screen remained dark.

It is remarkable that Young actually found, by experiment, numerical val-
ues for the very short wavelength of light (see the Student Guide Calcula-
tion for this chapter). Here is his result:

From a comparison of various experiments, it appears that the
breadth of the undulations constituting the extreme red light 
must be supposed to be, in air, about one 36 thousandth of an inch
[7 � 10�7 m], and those of the extreme violet about one 60 thou-
sandth [4 � 10�7 m].

In announcing his result, Young took special pains to forestall criticism
from followers of Newton, who was generally considered a supporter of
the particle theory. He pointed out that Newton himself had made several
statements favoring a theory of light that had some aspects of a wave the-
ory. Nevertheless, Young was not taken seriously. It was not until 1818,
when the French physicist Augustin Fresnel proposed his own mathemat-
ical wave theory, that Young’s research began to get the credit it deserved.
Fresnel also had to submit his work for approval to a group of physicists
who were committed to the particle theory. One of them, the mathemati-
cian Simon Poisson, tried to refute Fresnel’s wave theory of light. If it re-
ally did describe the behavior of light, Poisson said, a very peculiar thing
ought to happen when a small solid disk is placed in a beam of light. Dif-
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fraction of some of the light waves all around the edge of the round disk
should lead to constructive interference, producing a bright spot in the cen-
ter of the disk’s shadow on a white screen placed behind the disk. But the
particle theory of light allowed no room for ideas such as diffraction and
constructive interference. In addition, such a bright spot had never been
reported, and even the very idea of a bright spot in the center of a shadow
seemed absurd. For all of these reasons, Poisson announced that he had re-
futed the wave theory.

Fresnel accepted the challenge, however, and immediately arranged for
Poisson’s seemingly ridiculous prediction to be tested by experiment. The
result was that a bright spot did appear in the center of the shadow!
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(b)(a)

FIGURE 8.46 (a) A double-slit fringe pattern. When white light is used in Young’s experiment, each
wavelength produces its own fringe pattern slightly shifted from the others. The result is a central white
band surrounded by fringes that are increasingly colored. (b) When the separation between slits, a, is
decreased, the distance of the fringes from the central axis increases and the fringes broaden. All of this
can be seen easily with an ordinary long-filament display light bulb, viewed through the space between
two straight fingers.

FIGURE 8.45 Thomas Young’s original drawing showing interference effects in overlapping
waves. The alternate regions of reinforcement and cancellation in the drawing can be seen best
by placing your eye near the right edge and sighting at a grazing angle along the diagram.
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Thereafter, increasing numbers of scientists realized the significance of
the Young double-slit experiment and the “Poisson bright spot.” By 1850,
the wave model of light was generally accepted; physicists had begun to
concentrate on working out the mathematical consequences of this model
and applying it to the different properties of light.
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FIGURE 8.47 Augustin Jean Fresnel
(1788–1827) was an engineer of bridges
and roads for the French government.
In his spare time, he carried out exten-
sive experimental and theoretical work
in optics. Fresnel developed a compre-
hensive wave model of light that suc-
cessfully accounted for reflection, re-
fraction, interference, and polarization.
He also designed a lens system for
lighthouses that is still used today. 

FIGURE 8.48 Diffraction pattern
caused by an opaque circular disk,
showing the Poisson bright spot
in the center of the shadow. Note
also the bright and dark fringes of
constructive and destructive inter-
ference.
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8.16 WHAT IS COLOR?

The coloring agents found in prehistoric painting and pottery show that
humans have appreciated color since earliest times. But no scientific the-
ory of color was developed before the time of Newton. Until then, most
of the accepted ideas about color had come from artist–scientists like da
Vinci, who based their ideas on experiences with mixing pigments.

Unfortunately, the lessons learned in mixing pigments rarely apply to
the mixing of different-colored light beams. In ancient times, it was thought
that light from the Sun was “pure.” Color resulted from adding impurity,
as was considered to be the case when a beam of “pure light” was refracted
in glass and emerged with colored fringes.

Newton became interested in colors even while he was still a student 
at Cambridge University. In 1672, at the age of 29, Newton published a 
theory of color in the Philosophical Transactions of the Royal Society of 
London. This was his first published scientific paper. He wrote:

In the beginning of the Year 1666, at which time I applyed myself
to the grinding of Optick glasses of other figures than Spherical, I
procured me a Triangular glass-Prisme, to try therewith the cele-
brated Phaenomena of Colours. And in order thereto haveing dark-
ened my chamber, and made a small hole in my window-shuts, to
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FIGURE 8.49 Katherine Burr Blodgett
(1898–1979). Dr. Blodgett developed “in-
visible” glass by applying 44 layers of a
one-molecule thick transparent liquid
soap to glass to reduce reflections from
its surface. Today, nearly all camera lenses
and optical devices have non-reflective
coatings on their surfaces which facilitate
the efficient passage of light. 
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let in a convenient quantity of the Suns light, I placed my Prisme
at his entrance, that it might be thereby refracted to the opposite
wall. It was at first a very pleasing divertisement, to view the vivid
and intense colours produced thereby. . . . 

The cylindrical beam of “white” sunlight from the circular opening
passed through the prism and produced an elongated patch of colored light
on the opposite wall. This patch was violet at one end, red at the other,
and showed a continuous gradation of colors in between. For such a pat-
tern of colors, Newton invented the name spectrum.

But, Newton wondered, where do the colors come from? And why is the im-
age spread out in an elongated patch rather than circular? Newton passed
the light through different thicknesses of the glass, changed the size of the
hole in the window shutter, and even placed the prism outside the window.
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FIGURE 8.50 Title page from the
first edition of Newton’s Opticks
(1704), in which he described his
theory of light. 
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None of these changes had any effect on the spectrum. Perhaps some 
unevenness or irregularity in the glass produced the spectrum, Newton
thought. To test this possibility, he passed the colored rays from one prism
through a second similar prism turned upside down. If some irregularity in
the glass caused the beam of light to spread out, then passing this beam
through the second prism should spread it out even more. Instead, the sec-
ond prism, when properly placed, brought the colors back together fairly
well. A spot of white light was formed, as if the light had not passed through
either prism.

By such a process of elimination, Newton convinced himself of a belief
that he probably had held from the beginning: White light is composed of col-
ors. The prism does not manufacture or add the colors; they were there all
the time, but mixed up so that they could not be distinguished. When white
light passes through a prism, each of the component colors is refracted at
a different angle. Thus, the beam is spread into a spectrum.

As a further test of this hypothesis, Newton cut a small hole in a screen
on which a spectrum was projected. In this way, light of a single color could
be separated out and passed through a second prism. He found that the
second prism had no further effect on the color of this beam, though it re-
fracted the beam more. That is, once the first prism had done its job of
separating the colored components of white light, the second prism could
not change the color of the components.

Summarizing his conclusions, Newton wrote:

Colors are not Qualifications of Light derived from Refraction or Re-
flection of natural Bodies (as ’tis generally believed) but Original
and Connate Properties, which in divers Rays are divers. Some Rays
are disposed to exhibit a Red Colour and no other; some a Yellow
and no other, some a Green and no other, and so of the rest. Nor
are there only Rays proper and particular to the more Eminent
Colours, but even to all their intermediate gradations.

Apparent Colors of Objects

So far, Newton had discussed only the colors of rays of light. In a later sec-
tion of his paper he raised the important question: Why do objects appear
to have different colors? Why is the grass green, a paint pigment yellow or
red? Newton proposed a very simple answer:

That the Colours of all Natural Bodies have no other Origin than
this, that they . . . Reflect one sort of Light in greater plenty than
another.
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In other words, a red paint pigment looks red to us
because when white sunlight falls on it, the pigment
absorbs most of the rays of other colors of the spec-
trum and reflects mainly the red to our eyes.

According to Newton’s theory, color is not a prop-
erty of an object by itself. Rather, color depends on
how the object reflects and absorbs the various col-
ored rays that strike it. Newton backed up this hy-
pothesis by pointing out that an object may appear
to have a different color when a different kind of
light shines on it. For example, consider a pigment
that reflects much more red light than green or blue
light. When illuminated by white light, it will reflect
mostly the red component of the white light, and so
will appear red. But if it is illuminated with blue
light, there is no red there for it to reflect, and it can
reflect only a very little of the blue light. Thus, it

will appear to be dark and perhaps dimly blue. (However, Newton was not
suggesting that the rays themselves possess color, only that they raise the
sensation of color in the eye, or the mind.)

Reactions to Newton’s Theory

Newton’s theory of color met with violent opposition at first. Other British
scientists, especially Robert Hooke, objected on the grounds that postulat-
ing a different kind of light for each color was unnecessary. It would be
simpler to assume that the different colors were produced from pure white
light by some kind of modification. For example, the wave front might be
twisted so that it is no longer perpendicular to the direction of motion.

Newton was aware of the flaws in Hooke’s theory, but he disliked pub-
lic controversy. In fact, he waited until after Hooke’s death in 1703 to pub-
lish his own book, Opticks (1704), in which he reviewed the properties of
light and his many convincing experiments on light.

Newton’s Principia was a more important work from a purely scientific
viewpoint. But his Opticks had also considerable influence on the literary
world. This was in part because the work was written in English rather
than in Latin and because the book contained little mathematics. English
poets gladly celebrated the discoveries of their country’s greatest scientist.
Most poets, of course, were not deeply versed in the details of Newton’s
theory of gravity. The technical aspects of the geometric axioms and proofs
in the Principia were beyond most of its readers. Although some students,
including young Thomas Jefferson, learned their physics out of that book,
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Most colors observed for real
materials are “body” colors, pro-
duced by selective absorption of
light which penetrates a little
beyond the surface before being
scattered back. This explains
why the light transmitted by col-
ored glass has the same color as
the light reflected from it. Thin
metallic films, however, have
“surface” color, resulting from
selective regular reflection.
Thus, the transmitted light will
be the complement of the re-
flected light. For example, the
light transmitted by a thin film
of gold is bluish–green, while
that reflected is yellow.
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translations and popularized versions soon appeared. But Newton’s theory
of colors and light provided good material for poetic fancy, as in James
Thomson’s, “To the Memory of Sir Isaac Newton” (1727):

. . . First the flaming red,
Springs vivid forth; the tawny orange next;
And next delicious yellow; by whose side
Fell the kind beams of all-refreshing green.
Then the pure blue, that swells autumnal skies,
Ethereal played; and then, of sadder hue,
Emerged the deepened indigo, as when
The heavy-skirted evening droops with frost;
While the last gleamings of refracted light
Died in the fainting violet away.

Leaders of the nineteenth-century Romantic movement in literature and
the German “Nature Philosophers” did not think so highly of Newton’s
theory of color. The scientific procedure of dissecting and analyzing natu-
ral phenomena by experiments was distasteful to them. They preferred 
to speculate about the unifying principles of all natural forces, hoping 
somehow to grasp nature as a whole. The German philosopher Friedrich
Schelling wrote in 1802:

Newton’s Opticks is the greatest illustration of a whole structure 
of fallacies which, in all its parts, is founded on observation and 
experiment.

The German poet Goethe (mentioned in Chapter 4) rejected Newton’s
theory of colors and proposed his own theory, based upon his own direct
observations as well as passionate arguments. Goethe insisted on the pu-
rity of white light in its natural state, rejecting Newton’s argument that
white light is a mixture of colors. Instead, he suggested, colors may be pro-
duced by the interaction of white light and its opposite—darkness. Goethe’s
observations on the psychology of color perception were of some value to
science. But his theory of the physical nature of color could not stand up
under further detailed experiment. Newton’s theory of the colors of the
spectrum remained firmly established.

8.17 WHY IS THE SKY BLUE?

Newton suggested that the apparent colors of natural objects depend on
which color is most strongly reflected or scattered to the viewer by the ob-
ject. In general, there is no simple way of predicting from the surface struc-
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ture, chemical composition, etc., what colors a substance will reflect or scat-
ter. However, the blue color of the clear sky can be explained by a fairly
simple argument.

As Thomas Young showed experimentally (Section 8.15), different wave-
lengths of light correspond to different colors. The wavelength of light may
be specified in units of nanometers (abbreviated nm; 1 nm � 10�9 m) or, 
alternatively, in Ångstroms (Å), named after Anders Jonas Ångstrom, a
Swedish astronomer who, in 1862, used spectroscopic techniques to detect
the presence of hydrogen in the Sun. One angstrom (symbol Å) is equal 
to 10�10 m. The range of the spectrum visible to humans is from about 
400 nm (4000 Å) for violet light to about 700 nm (7000 Å) for red light.

Small obstacles can scatter the energy of an incident wave of any sort in
all directions, and the amount of scattering depends on the wavelength.
This fact can be demonstrated by simple experiments with water waves in
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FIGURE 8.51 If you look at a sunset on a hazy day, you receive primarily unscattered colors, such as
red, whereas if you look overhead, you will receive primarily scattered colors, the most dominant of
which is blue.
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a ripple tank. As a general rule, the larger the wavelength is compared to the
size of the obstacle, the less the wave is scattered by the obstacle. For particles
smaller than one wavelength, the amount of scattering of light varies in-
versely with the fourth power of the wavelength. For example, the wave-
length of red light is about twice the wavelength of blue light. Therefore,
the scattering of red light is only about one-sixteenth as much as the scat-
tering of blue light.

Now it is clear why the sky is blue. Light from the sun is scattered by sep-
arate molecules of vapor, particles of dust, etc., in the air above, all of which
are usually very small compared to the wavelengths of visible light. Thus, on
a clear day light of short wavelengths (blue light) is much more strongly scat-
tered by the particles than is light of longer wavelengths, and so-to-speak
fills the firmament from end to end. When you look up into a clear sky, it
is mainly this scattered light that enters your eyes. The range of scattered
short wavelengths (and the color sensitivity of the human eye) leads to the
sensation of blue. On the other hand, suppose you look at a sunset on a hazy
day. You receive directly from the Sun a beam that has had the blue light al-
most completely scattered out in all directions, while the longer wavelengths
have not been scattered out. So you perceive the Sun as reddish.

If the Earth had no atmosphere, the sky would appear black, and stars
would be visible by day. In fact, starting at altitudes of about 16 km, where
the atmosphere becomes quite thin, the sky does look black, and stars can
be seen during the day, as astronauts have found.

If light is scattered by particles considerably larger than one wavelength
(such as water droplets in a cloud), there is not much difference in the scat-
tering of different wavelengths. So we receive the mixture we perceive as white.

The blue–gray haze that often covers large cities is caused mainly by par-
ticles emitted by internal combustion engines (cars, trucks) and by indus-
trial plants. Most of these pollutant particles are invisible, ranging in size
from 10�6 m to 10�9 m. Such particles provide a framework to which gases,
liquids, and other solids adhere. These larger particles then scatter light
and produce haze. Gravity has little effect on the particles until they be-
come very large by collecting more matter. They may remain in the atmo-
sphere for months if not cleaned out by repeated rain, snow, or winds. The
influences of such clouds of haze or smog on the climate and on human
health are substantial.

8.18 POLARIZATION

Hooke and Huygens proposed that light is in many ways like sound, that
is, that light is a wave propagated through a medium. Newton could not
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accept this proposal and argued that light must also have some particle-like
properties, in addition to its wave nature. He noted two properties of light
that, he thought, could not be explained unless light had particle proper-
ties. First, a beam of light is propagated in space in straight lines, while
waves such as sound spread out in all directions and go around corners.
This objection could not be answered until early in the nineteenth century,
when Thomas Young measured the wavelength of light and found how ex-
tremely small it is. Even the wavelength of red light, the longest wavelength
of the visible spectrum, is less than one-thousandth of a millimeter. As long
as a beam of light shines on objects or through holes of ordinary size (a
few millimeters or more in width), the light will appear to travel in straight
lines. As we saw, diffraction and scattering effects do not become strikingly
evident until a wave passes over an object or through a hole whose size is
about equal to or smaller than the wavelength.

Newton based his second objection on the phenomenon of “polariza-
tion” of light. In 1669, the Danish scientist Erasmus Bartholinus discov-
ered that crystals of Iceland spar (calcite) could split a ray of light into two
rays. Writing or small objects viewed through the crystal looked double.

Newton thought this behavior could be explained by assuming that light
is made up of particles that have different “sides,” for example, rectangu-
lar cross sections. The double images, he thought, represent a sorting out
of light particles that had entered the medium with different orientations.

Around 1820, Young and Fresnel gave a far more satisfactory explana-
tion of polarization, using a modified wave theory of light. Before then,
scientists had generally assumed that light waves, like sound waves, must
be longitudinal. Young and Fresnel showed that if light waves are transverse,
this could account for the phenomenon of polarization.

In a transverse wave of a mechanical type, the motion of the medium it-
self, such as a rope, is always perpendicular to the
direction of propagation of the wave. This does not
mean that the motion of the medium is always in the
same direction. In fact, it could be in any direction
in a plane perpendicular to the direction of propa-
gation. However, if the motion of the medium is
mainly in one direction (e.g., vertical), the wave is
polarized. Thus, a polarized wave is really the sim-
plest kind of transverse wave. An unpolarized trans-
verse wave is more complicated, since it is a mixture
of various transverse motions. All of this applies to
light waves, which do not need a medium in which
to propagate.

Scientific studies of polarization continued
throughout the nineteenth century. For instance, the
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Ordinary light, when scattered
by particles, shows polarization
to different degrees, depending
on the direction of scattering.
The eyes of bees, ants, and other
animals are sensitive to the po-
larization of scattered light from
the clear sky. This enables a bee
to navigate by the Sun, even
when the Sun is low on the
horizon or obscured. Following
the bees’ example, engineers
have equipped airplanes with po-
larization indicators for use in
Arctic regions.
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way in which Iceland spar separates an unpolarized light beam into two po-
larized beams is sketched in Figure 8.53. Practical applications, however,
were frustrated, mainly because polarizing substances like Iceland spar were
scarce and fragile. One of the best polarizers was the synthetic crystal “her-
apathite,” or sulfate of iodo-quinine. The needle-like herapathite crystals
absorb light that is polarized in the direction of the long crystal axis and
absorb very little of the light polarized in a direction at 90° to the long axis.

Herapathite crystals were so fragile that there seemed to be no way of
using them. But in 1928, Edwin H. Land, while still a freshman in college,
invented a polarizing plastic sheet he called “Polaroid.” His first polarizer
was a plastic film in which many small crystals of herapathite were em-
bedded. When the plastic was stretched, the needle-like crystals lined up
in one direction. Thus, they all acted on incoming light in the same way.

Some properties of a polarizing material are easily demonstrated. For
example, you can obtain two polarizing sheets from the lenses of a pair of
polarizing sunglasses, or from the “three-dimensional” eyeglasses used in
Imax theatres. Hold one of the lenses in front of a light source. Then look
at the first lens through the second one. Rotate the first lens. You will no-
tice that, as you do so, the light alternately brightens and dims. You must
rotate the sheet through an angle of 90° to go from maximum brightness
to maximum dimness.

How can this effect be explained? The light that strikes the first lens, or
polarizing sheet, is originally unpolarized, that is, a mixture of waves po-
larized in different directions. The first sheet transmits only those waves
that are polarized in one direction, and it absorbs the rest. The transmit-
ted wave going toward the second sheet is now polarized in one direction.
Whenever this direction coincides with the direction of the long molecules
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(a) (b) (c)

FIGURE 8.52 The same short-wave train on the rope approaches the slotted board in each of the three
sketches. Depending on the orientation of the slot, the train of waves (a) goes entirely through the slot;
(b) is partly reflected and partly transmitted with changed angles of rope vibration; or (c) is completely
reflected.
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in the second sheet, the wave will not be absorbed by the second sheet (i.e.,
the wave will set up vibrations within the molecules of the crystals which
will transmit most of its energy). However, if the direction is perpendicular
to the long axis of the crystal molecules, the polarized light will not go
through the second sheet but instead will be absorbed.

In conclusion, we see that interference and diffraction effects required a
wave model for light. To explain polarization phenomena, the wave model
was made more specific; polarization could be explained only if the light
waves are transverse waves. Altogether, this model for light explains very
satisfactorily all the characteristics of light considered so far.

8.19 THE ETHER

One factor seems clearly to be missing from the wave model for light. Ear-
lier in this chapter we defined waves as disturbances that propagate in some
substance or “medium,” such as a rope or water. What is the medium for
the propagation of light waves?

Is air the medium for light waves? No, because light can pass through
airless space, as it does between the Sun or other stars and the Earth. Even
before it was definitely known that there is no air between the Sun and
the Earth, Robert Boyle had tried the experiment of pumping almost all
of the air out of a glass container. He found that the objects inside re-
mained visible.

A wave is a disturbance, and it was difficult to think of a disturbance
without specifying what was being disturbed. So it was natural to propose
that a medium for the propagation of light waves existed. This hypotheti-
cal medium was called the ether. The word “ether” was originally the name
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FIGURE 8.53 Double refraction by a crystal of Iceland
spar. The “unpolarized” incident light can be thought of
as consisting of two polarized components. The crystal
separates these two components, transmitting them
through the crystal in different directions and with dif-
ferent speeds.
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for Aristotle’s fifth element, the pure transparent fluid that filled the heav-
enly sphere and was later called “quintessence.” In the seventeenth and
eighteenth centuries, the ether was imagined to be an invisible fluid of very
low density. This fluid could penetrate all matter and fill all space. It might
somehow be associated with the “effluvium” (something that “flows out”)
that was imagined to explain magnetic and electric forces. But light waves
must be transverse in order to explain polarization, and transverse waves
usually propagate only in a solid medium. A liquid or a gas cannot transmit
transverse waves for any significant distance for the same reason that you
cannot “twist” a liquid or a gas. So nineteenth-century physicists assumed
that the ether must be a solid.

As stated in Section 8.3, the speed of propagation increases with the stiff-
ness of the medium, and decreases with its density. The speed of propaga-
tion of light is very high compared to that of other kinds of waves, such as
sound. Therefore, the ether was thought to be a very stiff solid with a very
low density. Yet it seems absurd to say that a stiff, solid medium (ether) fills
all space. The planets move through space without slowing down, so ap-
parently they encounter no resistance from a stiff ether. And, of course,
you feel no resistance when you move around in a space that transmits light
freely.

Without ether, the wave theory of light seemed improbable. But the
ether itself had absurd properties. Until early in this century, this problem
remained unsolved, just as it had for Newton. We shall shortly see how,
following Einstein’s modification of the theory of light, the problem was
solved.
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FIGURE 8.54 Polarized waves.

3637_CassidyTX_08  6/19/02  1:11 PM  Page 396



SOME NEW IDEAS AND CONCEPTS

diffraction period
ether polarization
frequency propagation
Huygens’ principle ray
in phase spectrum
interference superposition principle
longitudinal wave transverse wave
medium wave
nodal lines wave front
out of phase wavelength

AN IMPORTANT EQUATION

v � f �.

AN IMPORTANT UNIT

1 Hz � 1/s.

FURTHER READING

G. Holton and S.G. Brush, Physics, The Human Adventure (Piscataway, NJ: Rut-
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D. Park, The Fire within the Eye: A Historical Essay on the Nature and Meaning of
Light (Princeton, NJ: Princeton University Press, 1997).

J. Hecht, City of Light: The Story of Fiber Optics. Sloan Technology Series (New
York: Oxford University Press, 1999).

STUDY GUIDE QUESTIONS

A. WAVES

8.1 What Is a Wave?

1. How would you answer the question, What is a wave?
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8.2 The Properties of Waves

1. What kinds of mechanical waves can propagate in a solid?
2. What kinds of mechanical waves can propagate in a fluid?
3. What kinds of mechanical waves can be polarized?
4. Suppose that a mouse runs along under a rug, causing a bump in the rug that

travels with the mouse across the room. Is this moving disturbance a propa-
gating wave?

8.3 Wave Propagation

1. What is transferred along the direction of wave motion?
2. On what two properties of a medium does wave speed depend?
3. If a spring is heated to make it less stiff, does it carry waves faster or slower?

If the boxcars in a train are unloaded and empty, does the longitudinal start-
up wave travel faster or slower?

8.4 Periodic Waves

1. Of the variables frequency, wavelength, period, amplitude, and polarization, which
ones describe:
(a) space properties of waves?
(b) time properties of waves?

2. A vibration of 100 Hz (cycles per second) produces a wave:
(a) What is the wave frequency?
(b) What is the period of the wave?
(c) If the wave speed is 10 m/s, what is the wavelength?

3. If points X and Y on a periodic wave are one-half period “out of phase” with
each other, which of the following must be true?
(a) X oscillates at half the frequency at which Y oscillates.
(b) X and Y always move in opposite directions.
(c) X is a distance of one-half wavelength from Y.

8.5 When Waves Meet

1. Two periodic waves of amplitudes A1 and A2 pass through a point P. What is
the greatest possible displacement of P?

2. What is the displacement of a point produced by two waves together if the
displacements produced by the waves separately at that instant are �5 cm and
�6 cm, respectively? What is the special property of waves that makes this
simple result possible?

8.6 A Two-Source Interference Pattern

1. Are nodal lines in interference patterns regions of cancellation or of rein-
forcement?

2. What are antinodal lines? antinodal points?
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3. Nodal points in an interference pattern are places where:
(a) the waves arrive “out of phase”;
(b) the waves arrive “in phase”;
(c) the point is equidistant from the wave sources;
(d) the point is one-half wavelength from both sources.

4. Under what circumstances do waves from two in-phase sources arrive at a point
out of phase?

8.7 Standing Waves

1. When two identical waves of the same frequency travel in opposite directions
and interfere to produce a standing wave, what is the motion of the medium at:
(a) the nodes of the standing wave?
(b) the places between nodes (called antinodes or loops) of the standing wave?

2. If the two interfering waves have the same wavelength �, what is the distance
between the nodal points of the standing wave?

3. What is the wavelength of the longest traveling waves that can produce a stand-
ing wave on a string of length l?

4. Can standing waves of any frequency higher than that of the fundamental be
set up in a bounded medium?

8.8 Wavefronts and Diffraction

1. What characteristic do all points on a wave front have in common?
2. State Huygens’ principle in your own words.
3. Can there be nodal lines in a diffraction pattern from an opening less than one

wavelength wide? Explain.
4. What happens to the diffraction pattern from an opening as the wavelength

of the wave increases?
5. Can there be diffraction without interference? interference without diffraction?

8.9 Reflection

1. What is a “ray”?
2. What is the relationship between the angle at which a wave front strikes a bar-

rier and the angle at which it leaves?
3. What shape of reflector can reflect parallel wave fronts to a sharp focus?
4. What happens to wave fronts originating at the focus of such a reflecting 

surface?

8.10 Refraction

1. If a periodic wave slows down on entering a new medium, what happens to:
(a) its frequency?
(b) its wavelength?
(c) its direction?
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2. Complete the sketch below to show roughly what happens to a wave train that
enters a new medium beyond the vertical line in which its speed is greater.

8.11 Sound Waves

1. List five wave behaviors that can be demonstrated with sound waves.
2. Can sound waves be polarized? Explain.

B. LIGHT

8.12 What Is Light?

1. How would you answer the question in the title above?

8.13 Propagation of Light

1. Can a beam of light be made increasingly narrow by passing it through nar-
rower and narrower slits? What property of light does such an experiment
demonstrate?

2. What reason did Rœmer have for thinking that the eclipse of a particular satel-
lite of Jupiter would be observed later than expected?

3. What was the most important outcome of Rœmer’s work?

8.14 Reflection and Refraction

1. What evidence showed conclusively that Newton’s particle model for light
could not explain all aspects of refraction?

2. If light has a wave nature, what changes take place in the speed, wavelength,
and frequency of light on passing from air into water?

8.15 Interference and Diffraction

1. How did Young’s experiments support the wave model of light?
2. In what way is diffraction involved in Young’s experiments?
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3. What phenomenon did Poisson predict on the basis of Fresnel’s wave theory?
What was the result?

4. What does the Poisson–Fresnel debate tell about the way science grows?
5. Recall from discussions earlier in the text how difficult it often is for new sci-

entific ideas to be accepted.
(a) List the cases, just by names.
(b) Some people object to science as being “too dogmatic” and unchallenge-

able. Do these cases help or undermine such asssertions?

8.16 What Is Color?

1. How would you answer the question “What is color”?
2. How did Newton show that white light was not “pure”?
3. Why could Newton be confident that, say, green light was not itself composed

of different colors of light?
4. How would Newton explain the color of a blue shirt?
5. Why was Newton’s theory of color attacked by the Nature Philosophers?

8.17 Why Is the Sky Blue?

1. Why is the sky blue?
2. How does the scattering of light waves by tiny obstacles depend on the wave-

length?
3. What would you expect the sky to look like on the Moon? Why?

8.18 Polarization

1. What two objections did Newton have to a pure wave model?
2. Of the phenomena we have discussed, which ones agree with the wave model

of light?

8.19 The Ether

1. Why did scientists assume that there existed an “ether” that transmitted light
waves?

2. What remarkable property must the ether have if it is to be the mechanical
medium for the propagation of light?

DISCOVERY QUESTIONS

1. On the basis of the evidence presented in this chapter, can light be consid-
ered to consist of particles or of waves? Give evidence in support of your 
answer.
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2. The drawing below represents a pulse that propagates to the right along a
rope. What is the shape of a pulse propagating to the left that could for an
instant cancel this one completely?

3. What shape would the nodal regions have for sound waves from two loud-
speakers that emit the same sound?

4. Explain why it is that the narrower a slit in a barrier is, the more nearly it can
act like a point source of waves.

5. If light is also a wave, why have you not seen light being diffracted by the slits
of a picket fence, or diffracted around the corner of a house?

6. If the frequency of a wave traveling in a medium is increased, what will hap-
pen to its speed? What determines the speed of waves in a medium?

7. How can sound waves be used to map the floors of oceans?
8. Waves reflect from an object in a definite direction only when the wavelength

is small compared to the dimensions of the object. This is true for sound waves
as well as for any other. What does this tell you about the sound frequencies
a bat must generate if it is to catch a moth or a fly? Actually, some bats can
detect the presence of a wire about 0.12 mm in diameter. Approximately what
frequency would that require?

9. Suppose the reflecting surfaces of every visible object were somehow altered
so that they completely absorbed any light falling on them; how would the
world appear to you?

10. Because of atmospheric refraction, you see the Sun in the evening some min-
utes after it is really below the horizon, and also for some minutes before it
is actually above the horizon in the morning.
(a) Draw a simple diagram to illustrate how this phenomenon occurs.
(b) What would sunset be like on a planet with a very thick and dense (but

still transparent) atmosphere?
11. Using the phenomena of diffraction and interference, show how the wave the-

ory of light can explain the bright spot found in the center of the shadow of
a disk illuminated by a point source.

12. It is a familiar observation that clothing of certain colors appears different in
artificial light and in sunlight. Explain why.

13. To prevent car drivers from being blinded by the lights of approaching auto-
mobiles, polarizing sheets could be placed over the headlights and windshields
of every car. Explain why these sheets would have to be oriented in the same
way on every vehicle and must have their polarizing axis at 45° to the vertical.

14. A researcher has discovered some previously unknown rays emitted by a 
radioactive substance. She wants to determine if the rays are made up of
waves or particles. Design a few experiments that she could use to answer
her question.
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15. When Wilhelm Roentgen discovered X rays, which we now know to have a
wavelength of the order of 10�10 m, he could not decide by experiment
whether X rays were particles or waves. Why do you think he might have had
that difficulty?

Quantitative

1. (a) What is the speed of sound in air if middle C (256 Hz) has a wavelength
of 1.34 m?

(b) What is the wavelength in water of middle C if sound waves travel at 
1500 m/s in water?

(c) What is the period of a wave sounding middle C in air? in water?
2. Assuming that light is a wave phenomenon, what is the wavelength of green

light if the first node in a diffraction pattern is found 10 cm from the center
line at a distance of 4 m from the slits which have a separation distance of
2.5 � 10�3 cm?

3. A convenient unit for measuring astronomical distances is the light year, de-
fined as the distance that light travels in 1 year. Calculate the number of me-
ters in a light year to two significant figures.

4. Suppose a space vehicle had a speed one-thousandth that of light. How long
would it take to travel the 4.3 light years from Earth to the closest known star
other than the Sun, alpha Centauri? Compare the speed given for the space
vehicle with the speed of approximately 10 km/s maximum speed (relative to
the Earth) that a space capsule reaches on an Earth–Mars trip.

5. Calculate how much farther than expected Jupiter must have been from Earth
when Rœmer predicted a 10-min delay for the eclipse of 1676.

6. Green light has a wavelength of approximately 5 � 10�7 m (500 nm). What
frequency corresponds to this wavelength? Compare this frequency to the car-
rier frequency of the radio waves broadcast by a radio station you listen to.
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